IPC960A series IPC962A series IPC964A series

Industrial Computers

User's Manual

www.axiomtek.com

Disclaimers

This manual has been carefully checked and believed to contain accurate information. Axiomtek Co., Ltd. assumes no responsibility for any infringements of patents or any third party's rights, and any liability arising from such use.

Axiomtek does not warrant or assume any legal liability or responsibility for the accuracy, completeness or usefulness of any information in this document. Axiomtek does not make any commitment to update the information in this manual.

Axiomtek reserves the right to change or revise this document and/or product at any time without notice.

No part of this document may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Axiomtek Co., Ltd.

©Copyright 2023 Axiomtek Co., Ltd.
All Rights Reserved
October 2023, Version A2
Printed in Taiwan

Safety Precautions

Before getting started, please read the following important safety precautions.

- 1. The IPC960A/IPC962A/IPC964A Series does not come equipped with an operating system. An operating system must be loaded first before installing any software into the computer.
- 2. Be sure to ground yourself to prevent static charge when installing the internal components. Use a grounding wrist strap and place all electronic components in any static-shielded devices. Most electronic components are sensitive to static electrical charge.
- Disconnect the power cord from the IPC960A/IPC962A/IPC964A Series before making any installation. Be sure both the system and the external devices are turned OFF. A sudden surge of power could ruin sensitive components. Make sure the IPC960A/IPC962A/IPC964A Series is properly grounded.
- 4. Make sure the voltage of the power source is correct before connecting the equipment to the power outlet.
- 5. Turn OFF the system power before cleaning. Clean the system using a cloth only. Do not spray any liquid cleaner directly onto the screen.
- 6. Do not leave this equipment in an uncontrolled environment where the storage temperature is below -20°C or above 80°C. It may damage the equipment.
- 7. Do not open the system's back cover. If opening the cover for maintenance is a must, only a trained technician is allowed to do so. Integrated circuits on computer boards are sensitive to static electricity. To avoid damaging chips from electrostatic discharge, observe the following precautions:
 - Before handling a board or integrated circuit, touch an unpainted portion of the system unit chassis for a few seconds. This will help to discharge any static electricity on your body.
 - When handling boards and components, wear a grounding wrist strap, available from most electronic component stores.

Classification

- 1. Degree of production against electric shock: not classified
- 2. Degree of protection against the ingress of water: none
- 3. Equipment not suitable for use in the presence of a flammable anesthetic mixture with air or with oxygen or nitrous oxide.
- 4. Mode of operation: Continuous
- 5. Type of protection against electric shock: Class I equipment

General Cleaning Tips

You may need the following precautions before you begin to clean the computer. When you clean any single part or component for the computer, please read and understand the details below fully.

When you need to clean the device, please rub it with a piece of dry cloth.

- 1. Be cautious of the tiny removable components when you use a vacuum cleaner to absorb the dirt on the floor.
- 2. Turn the system off before you start to clean up the component or computer.
- 3. Never drop the components inside the computer or get circuit board damp or wet.
- 4. Be cautious of all kinds of cleaning solvents or chemicals when you use it for the sake of cleaning. Some individuals may be allergic to the ingredients.
- 5. Try not to put any food, drink or cigarette around the computer.

Cleaning Tools

Although many companies have created products to help improve the process of cleaning your computer and peripherals users can also use household items to clean their computers and peripherals. Below is a listing of items you may need or want to use while cleaning your computer or computer peripherals.

Keep in mind that some components in your computer may require designated products for cleaning. If this is the case it will be mentioned in the cleaning instructions.

- Cloth: A piece of cloth is the best tool to use when rubbing up a component. Although paper towels or tissues can be used on most hardware as well, we still recommend you to rub it with a piece of cloth.
- Water or rubbing alcohol: You may moisten a piece of cloth a bit with some water or rubbing alcohol and rub it on the computer. Unknown solvents may be harmful to the plastics parts.
- Vacuum cleaner: Vacuuming the dust, dirt, hair, cigarette particles, and other particles out of a computer can be one of the best methods of cleaning a computer. Over time these items can restrict the airflow in a computer and cause circuitry to corrode.
- Cotton swabs: Cotton swabs moistened with rubbing alcohol or water are excellent tools for wiping hard to reach areas in your keyboard, mouse, and other locations.
- Foam swabs: Whenever possible it is better to use lint free swabs such as foam swabs.

Note: It is strongly recommended that you should shut down the system before you start to clean any single components.

Note: Please check the temperature of system surface before maintenance.

Please follow the steps below:

- 1. Close all application programs;
- 2. Close operating software;
- 3. Turn off power switch;
- 4. Remove all device;
- 5. Pull out the power cable.

Scrap Computer Recycling

Please inform the nearest Axiomtek distributor as soon as possible for suitable solutions in case computers require maintenance or repair; or for recycling in case computers are out of order or no longer in use.

Trademark Acknowledgments

Axiomtek is a trademark of Axiomtek Co., Ltd.

Intel® and Pentium® are registered trademarks of Intel Corporation.

Windows 10 64-bit, Windows 10 IoT Enterprise 64-bit, Windows 11 64-bit, are trademarks of Microsoft Corporation.

Other brand names and trademarks are the properties and registered brands of their respective owners.

Table of Contents

Safety Preca	autions	. iii
Classification	on	. iv
General Cle	aning Tips	. iv
	ools	
•	outer Recycling	
•	, ,	
	INTRODUCTION	
	neral Description	
1.2 Sys	tem Specifications	2
	System Features	
	PU Level	
	Specification	
	perating Temperature	
	Certification	
•	tem Dimensions	
,	tem Outlets	
1.5 Pac	king List	12
1.6 M/B	B Block Diagram	13
1.7 Jun	nper Settings	
1.7.1	Restore BIOS Optimal Defaults (SW2)	.14
1.8	Connectors	15
	MINI Card Slot (CN7)	
1.8.2	LAN+USB3.2 (CN8, CN9)	. 17
1.8.3	DVI-D Connector (DVI1)	. 19
1.8.4	DP++ connector (CN2)	
1.8.5	HDMI Connector (CN1)	
1.8.6	USB 3.2 connector (H610E Only support USB2.0) (CN6)	
	Audio Connector (CN4)	
1.8.8	DC-in Phoenix Power Connector (CN13)	
	COM Port Connector (COM1)	
	M.2 2280 Key M NVMe SSD (CN5)	
	SATA Power Connector (SATAPWR1~2)	
	SATA Connector (SATA1~SATA2)	
	Power On/OFF Button & LED (SW2) Extended control Connector (CN12)	
	MIO530 Module Kit, M.2 Key B+M.2 Key E (Q670 sku Only)	
	Flexible IO - AX93511	
	Flexible IO - AX93511	
	Flexible IO – AX93516	
	Flexible IO – AX93519	
	Flexible IO – MIO160.	
	Riser card – EIO121, EIO122, EIO141, EIO142	
	PHARDWARE INSTALLATION	
	Installing the Processor	
2.2	Procedure of Installation	
	Installing the Memory Module	
	Installing the Hard Disk Drive	
	Installing the extension I/O module	
2.6	Installing the Fan Module	50

2.7	Installing PCI or PCIe Card	51				
2.7.1	Installing PCI or PCIe card	51				
2.7.2	The limitation of an add-on card	54				
2.8	Installing the Mini Card Module	. 62				
2.9	Installing the 5G Wireless Module	. 63				
2.10	Installing the M.2 key E Wireless Module	. 66				
2.11	Installing the NVMe SSD Module	. 67				
2.12	Mounting					
SECTION :	3 AMI BIOS UTILITY	72				
3.1	Starting	72				
3.2	Navigation Keys	73				
3.3	Main Menu	. 74				
3.4	Advanced	75				
3.5	Chipset Menu	. 92				
3.6	Security Menu	101				
3.7	Boot Menu	103				
3.8	Save & Exit Menu	104				
APPENDIX	(A WATCHDOG TIMER	106				
A.1	About Watchdog Timer	106				
A.2	Sample Program					
APPENDIX	(B WAKE on LAN	110				
How to S	Set up Wake on LAN	110				
APPENDIX	APPENDIX D HDD HOT-SWAPPABLE116					
Removin	Removing Hot-Swappable storage117					

SECTION 1 INTRODUCTION

This chapter contains general information and detailed specifications of the IPC960A/IPC962A/IPC964A Series. Chapter 1 includes the following sections:

- General Description
- System Specifications
- Dimensions
- I/O Outlets
- Jumper Settings
- Connectors
- Package List

1.1 General Description

The IPC960A, IPC962A and IPC964A are fan-less systems with an optional fan module that can support LGA1700 socket for Intel® 13th/12th generation Core™ i7/i5/i3 processors. The IPC960A/IPC962A/IPC964A are also built with a rugged design that makes the system suitable for the most endurable operation.

For operation systems, the IPC960A/IPC962A/IPC964A series not only supports Windows® 11 64-bit, Windows® 10 64-bit and Ubuntu, but also supports embedded OS.

The IPC960A/IPC962A/IPC964A Series supports two hard-drive bays to make it easy for customers to install and maintain the system.

1.2 System Specifications

1.2.1 System Features

- Front I/O design
- Optional extension system IO module
- Optional 5G network (Q670E)
- Intelligent power management (Ignition, USB power on/off control)
- Supports Intel® RAID (Q670E)
- EN61000-6-2 certified

1.2.2 CPU Level

- Socket LGA1700 for 13th/12th Generation Intel® CoreTM i7/i5/i3 processors, up to 65W
- Below is a list of supported CPUs.

	Proc No	WATT	Performance-core	Efficient-core base
Generation	PIOC NO	WAII	base frequency	frequency
Raptor Lake	i9-13900E	65W	1.8 GHz	1.3 GHz
Raptor Lake	i9-13900TE	35W	1.0 GHz	800 MHz
Raptor Lake	i7-13700E	65W	1.9 GHz	1.3 GHz
Raptor Lake	i7-13700TE	35W	1.1 GHz	800 MHz
Raptor Lake	i5-13500E	65W	2.4 GHz	1.5 GHz
Raptor Lake	i5-13500TE	35W	1.3 GHz	1.1 GHz
Raptor Lake	i3-13100E	65W	3.3 GHz	3.3 GHz
Raptor Lake	i3-13100TE	35W	2.4 GHz	2.4 GHz
Alder Lake	i9-12900E	65W	2.3 GHz	1.7 GHz
Alder Lake	i9-12900TE	35W	1.1 GHz	1.0 GHz
Alder Lake	i7-12700E	65W	2.1 GHz	1.6 GHz
Alder Lake	i7-12700TE	35W	1.4 GHz	1.0 GHz
Alder Lake	i5-12500E	65W	2.9 GHz	
Alder Lake	i5-12500TE	35W	1.9 GHz	
Alder Lake	i3-12100E	60W	3.2 GHz	
Alder Lake	i3-12100TE	35W	2.1 GHz	
Alder Lake	G7400E	46W	3.6 GHz	
Alder Lake	G7400TE	35W	3.0 GHz	
Alder Lake	G6900E	46W	3.0 GHz	
Alder Lake	G6900TE	35W	2.4 GHz	

1.2.3 Specification

	Г	Г	1	Т		
	IPC960A	IPC962A	IPC960A	IPC962A	IPC964A	
System chipset	H610E	H610E	Q670E	Q670E	Q670E	
BIOS	AMI E	BIOS with Sma	art View and Cus	tomer CMOS Ba	ackup	
System memory	2x DDR5 4	800/4000 un-b	uffered SO-DIM	M 262-pin, max	up to 64GB	
Ethernet		1 >	2.5GbE Intel I2	26-V		
Euleniet	1 x 1	GbE LAN (Inte	el@ 1219-LM); v	vith Intel AMT (C	(670)	
Serial		1 x RS232/4	22/485 (default l	RS232) COM1		
	2 x USB3.2 (Gen2x1(10G)	6 v 110	SP2 2 Cap2v1 (r	100)	
USB	2 x USB3.2	Gen1x1(5G)		SB3.2 Gen2x1 (1	,	
	2 x U	SB2.0	1 X USB2.0 (II	nternal, type A, ı	up to 30mm)	
	1	x DVI-D with	1920 x 1200 res	olution supporte	d	
Display	1	x HDMI with	4096 x 2160 res	olution supporte	d	
	1	x DP++ with	4096 x 2160 res	olution supporte	d	
Audio		1 x 3.5mm	າ jack for Line oເ	ıt and Mic-in		
TPM		1	x TPM 2.0 on bo	oard		
Extension system I/O	Δ,	V02E44 AV02	E40 AV02E46	AV02540 MIO4	20	
module (optional)	A.	AX93511, AX93512, AX93516, AX93519, MIO160				
Riser card	N/A	EIO121	N/A	EIO121	EIO141	
Riser card	ard N/A	EIO122		EIO122	EIO142	
	1 v mDCla a	ookot w/ CIM	1 x mPCle sock	et w/ SIM slot		
Expansions	1 x mPCle socket w/ SIM		1 x M.2 key E 2230 + 1 x M.2 key B 3052 w/			
	SI	ot	SIM slot (optional)			
	2 x 2.5" HDD/SSD tray (7/9.5/15mm height)					
Storage						
	1 x M.2 key M 2280 socket (PCle x4 Gen4, Q670E)					
System indicator	1 x HDD/SSD access LED					
	3 x user's LED					
			er input 18 to 36			
	1 x switch for ower on/off with LED (default ATX)					
Power input	1 x 4-pin Terminal Block for DC input					
	1 x 4-pin Terminal Block for ignition control, remote power and remote					
	LED					
Inrush current	+24V/10.8A					
	24Vdc, 6A	24Vdc, 11A	24Vdc, 6A	24Vdc, 11A	24Vdc,	
Power rating	27 V U U, U M	27 VUO, 11A	27 000, 07	27 VUO, 11A	13.5A	
Storage temperature	-20℃-80℃					
Humidity	10%-90% (non-condensing)					

Vibration	IPC960A:: IEC 60068-2-64 (with SSD: 3Grms STD, random, 5 to 500 Hz, 1 hr/axis) IPC962A/IPX964A: IEC 60068-6-4 (W/SSD: 1Grms STD, random, 5-500 Hz, 1 hr/axis)				
Shock	IEC 60068-2-27 (with SSD: 50G, half sine, 11 ms duration)				
Dimensions	83.5x192x26 0 mm	170x192x26 0 mm	83.5x192x260 mm	170x192x260 mm	205x192x26 0 mm

Note: Since Gen. 2 SSD with JMicron controller has a compatibility issue with Intel PCH, it is strongly recommended to use Gen. 3 SSD on system.

Note: Please fix the system power input in 24Vdc when plugging an add-on card.

Extension system I/O module

- AX93511 4 x RS-232/422/485 module (default RS-232)
- AX93512 2 x RS-232/422/485 w/ isolated 1.5KVDC and 8-in/8-out isolated 1.5KVDC DIO
- AX93516 4 x RS232/422/485 w/isolated 2KVDC module
- AX93519 2 x RS232/422/485 + 1 G.E. LAN (I210-AT) + 2 USB3.2 Gen1x1 (5G) (Q670E) AX93519 2 x RS232/422/485 + 1 G.E. LAN (I210-AT) + 2 USB2.0 (H610E)
- MIO160 6 x Serial port (4-wire RS232: TXD/RXD/RTS/CTS)/422/485 isolated 1.5kVDC & 2 CAN bus with isolated 1.5kVDC module(supports the CAN 2.0A and CAN2.0B protocol specification)

Note: The RS-485 auto flow control only supports below formats to communicate data:

- 8 data bits + 1 stop bit
- 8 data bits + 1 parity bit + 1 stop bit
- 8 data bits + 1 parity bit + 2 stop bits
- 8 data bits + 2 stop bits
- 7 data bits + 1 parity bit (even or odd) + 2 stop bits

Riser card

- EIO121: 1 PCle x16 Gen4 + I PCle x8 (x4 signal) Gen4
 - 1 USB2.0 type A 180D
 - 2 Fan connector
 - 2 8-pin power connector
 - 1 4-pin power connector
- EIO122: 1 PCle x16 Gen4 + I PCI
 - 1 USB2.0 type A 180D
 - 2 Fan connector
 - 2 8-pin power connector

- 1 4-pin power connector
- ➤ EIO141: 1 PCle x16 Gen4 + I PCle x8 Gen3(x4 signal) + 2 PCle x4 Gen4 (open ended connector)
 - 1 USB2.0 type A 180D
 - 1 Fan connector
 - 2 8-pin power connector
 - 1 4-pin power connector
- EIO142: 1 PCle x16 Gen4 + I PCle x4 Gen4 (open ended connector) + 2 PCl
 - 1 USB2.0 type A 180D
 - 1 Fan connector
 - 2 8-pin power connector
 - 1 4-pin power connector

Note: The maximum power rating for expansion slots at 70°C cannot exceed the following value:

The maximum loading of +3.3V+5V+12V+24V<350W (EIO141, EIO142)

The maximum loading of +3.3V+5V+12V+24V<230W (EIO121, EIO122)

Note: 12V maximum loading for 2 x 8-pin connectors (ATX2-3) are 300W. (EIO141, EIO142)

12V maximum loading for 2 x 8-pin connectors (ATX2-3) are 200W. (EIO121, EIO122)

Note: 24V maximum loading for 1 x 4-pin connector (ATX1) is 5A(120W).

Note: The system power rating may thus be changed base on differing combinations of attached devices.

1.2.4 Operating Temperature

Below is a list of system operating temperature w/ Intel® Core™ processor and industrial wide-

temp SSD.

Generation	Proc No	WATT	Operating Temperature	Performance- core base	Efficient-core base frequency
			(0.7 m/s air flow)	frequency	
Raptor Lake	i9-13900E	65W	-20°C-50°C	1.8 GHz	1.3 GHz
Raptor Lake	i9- 13900TE	35W	-20°C-60°C	1.0 GHz	800 MHz
Raptor Lake	i7-13700E	65W	-20°C-50°C	1.9 GHz	1.3 GHz
Raptor Lake	i7- 13700TE	35W	-20°C-60°C	1.1 GHz	800 MHz
Raptor Lake	i5-13500E	65W	-20°C-50°C	2.4 GHz	1.5 GHz
Raptor Lake	i5- 13500TE	35W	-20°C-60°C	1.3 GHz	1.1 GHz
Raptor Lake	i3-13100E	65W	-20°C-50°C	3.3 GHz	3.3 GHz
Raptor Lake	i3-13100TE	35W	-20°C-60°C	2.4 GHz	2.4 GHz
Alder Lake	i9-12900E	65W	-20°C-50°C	2.3 GHz	1.7 GHz
Alder Lake	i9-12900TE	35W	-20°C-60°C	1.1 GHz	1.0 GHz
Alder Lake	i7-12700E	65W	-20°C-50°C	2.1 GHz	1.6 GHz
Alder Lake	i7-12700TE	35W	-20°C-60°C	1.4 GHz	1.0 GHz
Alder Lake	i5-12500E	65W	-20°C-50°C	2.9 GHz	
Alder Lake	i5-12500TE	35W	-20°C-60°C	1.9 GHz	
Alder Lake	i3-12100E	60W	-20°C-50°C	3.2 GHz	
Alder Lake	i3-12100TE	35W	-20°C-60°C	2.1 GHz	
Alder Lake	G7400E	46W	-20°C-50°C	3.6 GHz	
Alder Lake	G7400TE	35W	-20°C-60°C	3.0 GHz	
Alder Lake	G6900E	46W	-20°C-50°C	3.0 GHz	
Alder Lake	G6900TE	35W	-20°C-60°C	2.4 GHz	

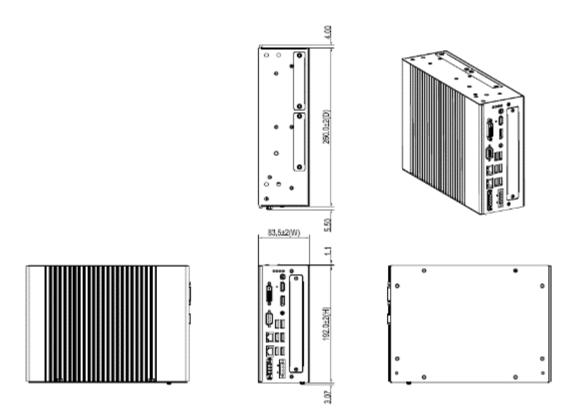
Note: The IPC system may cause CPU frequency hopping when operating in an extremely high temperature environment, and thermal throttling may occur when the system remains in full loading conditions.

Note: The performance of the system might be adversely affected when operating at a temperature above the system's limitation or with an unrecommended processor.

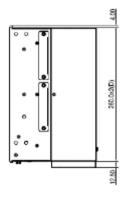
Note: If the operating temperature is above 35°C, it is recommended to use a wide temperature SSD on the device.

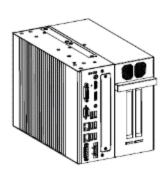
1.2.5 Certification

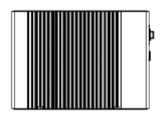
- CE(EN 61000-6-4, EN 61000-6-2)
- FCC

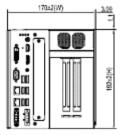


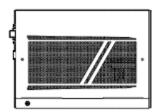
Note: All specifications and images are subject to change without notice.

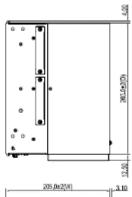

1.3 System Dimensions

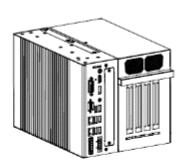

The following diagrams show you dimensions and outlines of the IPC960A/IPC962A/IPC964A Series.

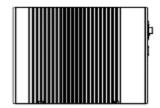

IPC960A

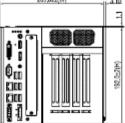


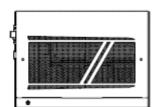

IPC962A

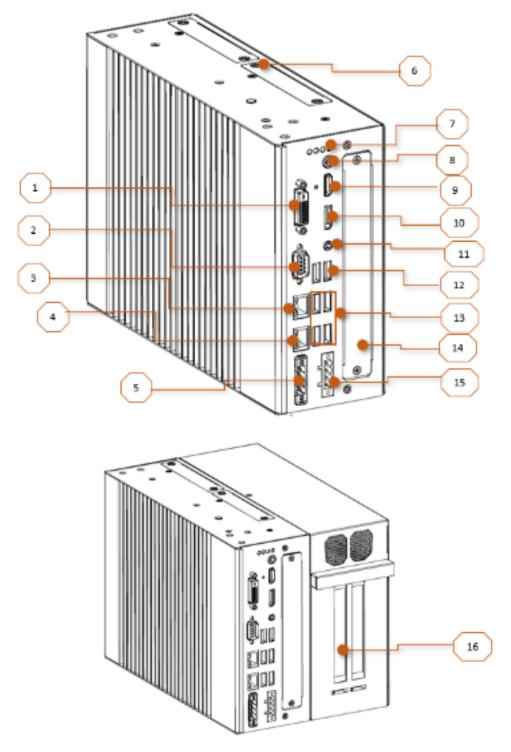


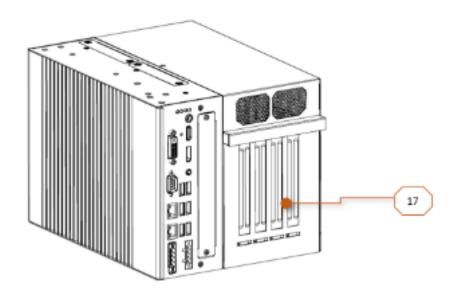







IPC964A



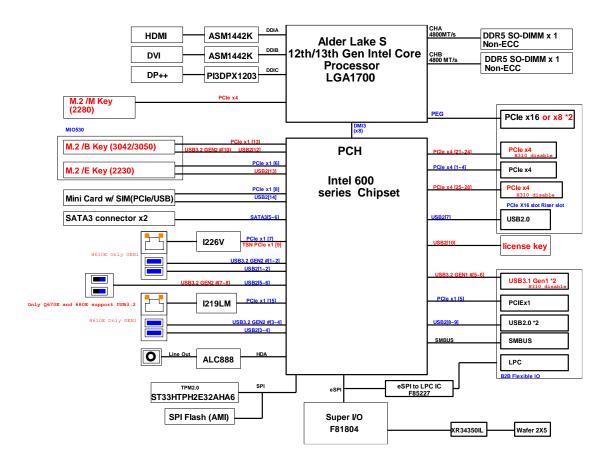


1.4 System Outlets

The following figures show locations of the IPC960A series system outlets.

Mark	Description
1	DVI-D with 1920 x 1200 resolution
2	RS232/422/485 (default RS232) COM1
3	1GbE Intel I219-LM
4	2.5GbE Intel I226-V
5	4-pin Terminal Block for ignition control, remote power and remote LED
6	2 x 2.5" HDD/SSD tray
7	1 x HDD/SSD access LED
1	3 x user's LED
8	Switch for ower on/off with LED (default ATX)
9	HDMI with 4096 x 2160 resolution
10	DP++ with 4096 x 2160 resolution
11	3.5mm jack for Mic-in and Line-out
12	2 x USB2.0(H610E) or 2 x USB3.2 Gen2x1 10G (Q670E)
13	2 x USB3.2 Gen2x1 10G
14	Extension system IO window for AX93511, AX93512, AX93516, AX93519 and
14	MIO160
15	4-pin Terminal Block for DC input
16	Expansion slots for EIO121 or EIO122 (riser card)
17	Expansion slots for EIO141 or EIO142 (riser card)

1.5 Packing List


The package bundled with your IPC960A/IPC962A/IPC964A Series should contain the following items:

- IPC960A/IPC962A/IPC964A Series unit x 1
- Screw pack x 1
- Foot pad x 4
- CPU grease x 1
- Terminal block x 2
- Holder bracket kit x 1 (for IPC962A/IPC964A)

If you cannot find this package or any items are missing, please contact Axiomtek distributors immediately.

1.6 M/B Block Diagram

The following diagram shows you the M/B block diagram of PSB515.

Jumper Settings 1.7

Properly configure jumper settings on the PSB515 to meet your application purpose. Below you can find a summary table of all jumpers and onboard default settings.

Note: How to setup Jumpers

Illustrations below show that a cap on a jumper is to "close" the jumper, whereas that off a jumper is to "open" the jumper.

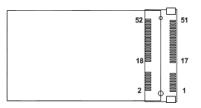
1.7.1 Restore BIOS Optimal Defaults (SW2)

Touch Switches push (down) for 5 seconds. Doing this procedure can restore BIOS optimal defaults.

Function	Setting
Normal operation (Default)	OPEN
Restore BIOS optimal defaults	Push (down) 5s

1.8 Connectors

Connectors connect the board with other parts of the system. Loose or improper connection might cause problems. Make sure all connectors are properly and firmly connected.


Here is a table summarizing all connectors on the board.

Connector	Label	
MINI Card slot	CN7	
LAN1+USB3.0	CN8	
LAN2+USB3.0	CN9	
DVI-D connector	DVI1	
DP++ connector	CN2	
USB 3.2 connector (H610E Only support USB2.0)	CN6	
Audio connector	CN4	
DC-in Phoenix power connector	CN13	
HDMI connector	CN1	
M.2 2280 Key M NVMe SSD	CN5	
COM port connector	COM1	
SATA Power connector (+5V Only)	SATAPWR1~2	
SATA III connector	SATA1~2	
DDR5 SO-DIMM (262 Pin)	SODIMM1~2	
Power button	SW1	
Remote SW/LED ; IGN control	CN12	
MIO530 Module Kit,M2 Key B,M2 Key E (Q670 sku Only)	CN3	
Flexible IO-AX93511 COM x4 (RS232/422/485)	-	
Flexible IO-AX93516 isolated COM x4 (RS232/422/485)		
Flexible IO-AX93512 isolated COM x2 (RS232/422/485) & 8in/8out DIO		
Flexible IO-AX93519 COM x2 (RS232/422/485), USB x2 & LAN1	SCN1	
Flexible IO-MIO160 6 x Serial port (4-wire RS232: TXD/RXD/RTS/CTS)/422/485		
isolated 1.5kVDC & 2 CAN bus with isolated 1.5kVDC module(supports the CAN		
2.0A and CAN2.0B protocol specification)		
Riser card card Card - EIO141 1 PCle x 16 Gen4 + I PCle x8 Gen3(x4 signal) + 2		
PCIe x4 Gen4 (open ended connector)		
Riser card card Card - EIO142 1 PCle x 16 Gen4 + I PCle x4 Gen4 (open ended	SHB1+SHB2	
connector) + 2 PCI	-	
Riser card card Card - EIO121: 1 PCle x 16 Gen4 + I PCle x8 (x4 signal) Gen4	-	
Riser card card Card - EIO122: 1 PCIE x16 Gen4 + 1 PCI		

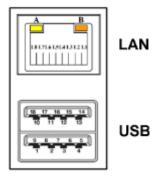
1.8.1 MINI Card Slot (CN7)

A PCI-Express Mini Card connector is located on the top side . It follows mini PCIe 1.2 standard.

Pins	Signals	Pins	Signals
1	WAKE#	2	+3.3VSB
3	No use	4	GND
5	No use	6	+1.5V
7	CLKREQ#	8	No use
9	GND	10	No use
11	REFCLK-	12	No use
13	REFCLK+	14	No use
15	GND	16	No use
17	No use	18	GND
19	No use	20	W_DISABLE#
21	GND	22	PERST#
23	PE_RXN3/	24	+3.3VSB
25	PE_RXP3/	26	GND
27	GND	28	+1.5V
29	GND	30	SMB_CLK
31	PE_TXN3/	32	SMB_DATA
33	PE_TXP3/	34	GND
35	GND	36	USB_D8-
37	GND	38	USB_D8+
39	+3.3VSB	40	GND
41	+3.3VSB	42	No use
43	GND	44	No use
45	No use	46	No use
47	No use	48	+1.5V
49	No use	50	GND
51	No use	52	+3.3VSB

Note: For H610E PCH, the on board full-size PCI Express Mini Card slot offers USB interface.

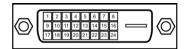
For Q670E PCH, the on board full-size PCI Express Mini Card slot offers PCIe and USB interface.


1.8.2 LAN+USB3.2 (CN8, CN9)

The system has two RJ-45 connectors: LAN1 and LAN2. Ethernet connection can be established by plugging one end of the Ethernet cable into this RJ-45 connector and the other end (phone jack) to a 2500/1000/100-Base-T hub.

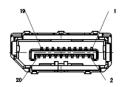
Port	LAN LED	Descriptions	
		Speed LED:	
		Link 10	off
CNIO	A	Link 100	Green
CN8		Link 1000	Orange
		Active Link LED	:
	В	Active	Yellow Blinking
		Speed LED:	
		Link 10	off
	А	Link 100	off
CN9		Link 1000	Orange
		Link 2500	Green
		Active Link LED	:
	В	Active	Yellow Blinking

The Universal Serial Bus connectors are compliant with USB 3.2 (10Gb/s) and ideal for installing USB peripherals such as scanners, cameras and USB devices.


Pins	Signal USB Port 0	Pins	Signal USB Port 1
1	USB_VCC (+5V level standby power)	10	USB_VCC (+5V level standby power)
2	USB_Data2-	11	USB_Data3-
3	USB_Data2+	12	USB_Data3+
4	GND	13	GND
5	SSRX2-	14	SSRX3-
6	SSRX2+	15	SSRX3+
7	GND	16	GND
8	SSTX2-	17	SSTX3-
9	SSTX2+	18	SSTX3+

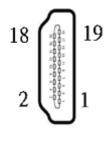
1.8.3 DVI-D Connector (DVI1)

The high rise DVI-D connector provides transmission of fast and high quality video signals between a source device (graphics card) and a display device (monitor).


Pin	Signal	Pin	Signal	Pin	Signal
1	TX2-	9	TX1-	17	TX0-
2	TX2+	10	TX1+	18	TX0+
3	Ground	11	Ground	19	Ground
4	NC	12	NC	20	NC
5	NC	13	NC	21	NC
6	DVI_SPD_CLK	14	VGAVCC	22	Ground
7	DVI_SPD DATA	15	Ground	23	TXC+
8	NC	16	HPDETECT	24	TXC-

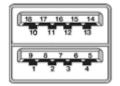
1.8.4 DP++ connector (CN2)

The DP++ is a compact digital interface which is capable of transmitting high-definition video and high-resolution audio over a single cable.


Pin	Signal	Pin	Signal
1	LANE 0	2	GND
3	LANE 0#	4	LANE 1
5	GND	6	LANE 1#
7	LANE 2	8	GND
9	LANE 2#	10	LANE 3
11	GND	12	LANE 3#
13	Detect Pin	14	GND
15	AUX CH	16	GND
17	AUX CH#	18	Hot Plug Detect
19	GND	20	DP_PWR(3.3V)

1.8.5 HDMI Connector (CN1)

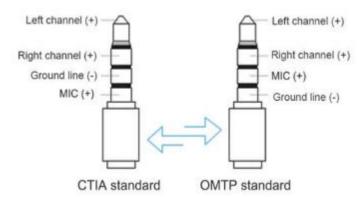
The HDMI (High-Definition Multimedia Interface) is a compact digital interface which is capable of transmitting high-definition video and high-resolution audio over a single cable.


Pins	Signals	Pins	Signals
1	HDMI OUT_DATA2+	11	GND
2	GND	12	HDMI OUT Clock-
3	HDMI OUT_DATA2-	13	N.C.
4	HDMI OUT_DATA1+	14	N.C.
5	GND	15	HDMI OUT_SCL
6	HDMI OUT_DATA1-	16	HDMI OUT_SDA
7	HDMI OUT_DATA0+	17	GND
8	GND	18	+5V
9	HDMI OUT_DATA0-	19	HDMI_HTPLG
10	HDMI OUT Clock+		

1.8.6 USB 3.2 connector (H610E Only support USB2.0) (CN6)

The Universal Serial Bus connectors are compliant with USB 3.2 10Gb/s (H610E Only supports USB2.0 480Mbps), providing ideal interfaces ideal for installing USB peripherals such as a keyboard, mouse, scanner, etc.

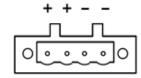
Pins	Signal USB Port 0	Pins	Signal USB Port 1
1	USB_VCC (+5V level standby power)	10	USB_VCC (+5V level standby power)
2	USB_Data2-	11	USB_Data3-
3	USB_Data2+	12	USB_Data3+
4	GND	13	GND
5	SSRX2-	14	SSRX3-
6	SSRX2+	15	SSRX3+
7	GND	16	GND
8	SSTX2-	17	SSTX3-
9	SSTX2+	18	SSTX3+



1.8.7 Audio Connector (CN4)

This audio jack support for Audio Mic-In and Line-out.

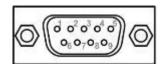
Support CTIA and OMTP pin define for auto switching.


Pins	Signals
1 (Tip)	Line-out (L)
2 (Ring1)	Line-out (R)
3 (Ring2)	GND or Mic-in
4 (Sleeve)	Mic-in or GND

1.8.8 DC-in Phoenix Power Connector (CN13)

The system supports the +24VDC Phoenix DC-in connector for system power input.

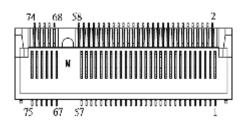
Pins	Signals
1	DC+
2	DC+
3	DC-
4	DC-



1.8.9 COM Port Connector (COM1)

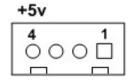
The system has a serial port: COM1 is RS-232/422/485 port. Please set configuration of the serial port in the Advanced menu in BIOS.

*RS-232/422/485 can be configured via BIOS settings


Pins	RS-232	RS-422	RS-485
1	DCD, Data Carrier Detect	TX-	Data-
2	RXD, Receive Data	TX+	Data+
3	TXD, Transmit Data	RX+	No use
4	DTR, Data Terminal Ready	RX-	No use
5	GND, Ground	No use	No use
6	DSR, Data Set Ready	No use	No use
7	RTS, Request To Send	No use	No use
8	CTS, Clear To Send	No use	No use
9	No use	No use	No use

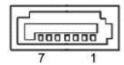
1.8.10 M.2 2280 Key M NVMe SSD (CN5)

The M.2 2280 Key M NVM Express SSD for storage.


Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
1	GND	2	+3.3V	3	GND	4	+3.3V
5	PERn3	6	NC	7	PERp3	8	NC
9	GND	10	LED_1#	11	PETn3	12	+3.3V
13	PETp3	14	+3.3V	15	GND	16	+3.3V
17	PERn2	18	+3.3V	19	PERp2	20	NC
21	GND	22	NC	23	PETn2	24	NC
25	PETp2	26	NC	27	GND	28	NC
29	PERn1	30	NC	31	PERp1	32	NC
33	GND	34	NC	35	PETn1	36	NC
37	PETp1	38	NC	39	GND	40	NC
41	PERn0	42	NC	43	PERp0	44	NC
45	GND	46	NC	47	PETn0	48	NC
49	PETp0	50	PERST#	51	GND	52	CLKREQ#
53	REFCLKn	54	PEWAKE#	55	REFCLKp	56	NC
57	GND	58	NC	59	CONNECTOR Key M	60	CONNECTOR Key M
61	CONNECTOR Key M	62	CONNECTOR Key M	63	CONNECTOR Key M	64	CONNECTOR Key M
65	CONNECTOR Key M	66	CONNECTOR Key M	67	NC	68	NC
69	NC	70	+3.3V	71	GND	72	+3.3V
73	GND	74	+3.3V	75	GND		

1.8.11 SATA Power Connector (SATAPWR1~2)

The SATA power connector is used for interfacing SATA 2.5" HDD/SSD power supply.

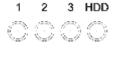

P				
Pins	Signals			
1	NC			
2	GND			
3	GND			
4	+5V			

1.8.12 SATA Connector (SATA1~SATA2)

These Serial Advanced Technology Attachment (Serial ATA or SATA) connectors are used as high-speed SATA interfaces. They are computer bus interfaces for connecting to devices such as hard disk drives. This board has two SATA 3.0 ports with 6Gb/s performance.

Pins	Signals
1	GND
2	SATA_TX+
3	SATA_TX-
4	GND
5	SATA_RX-
6	SATA_RX+
7	GND

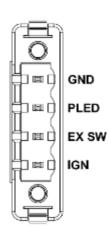
1.8.13 Power On/OFF Button & LED (SW2)


The power button is on the I/O side. It allows users to control IPC96xA power on/off, The LED displays the current status, refer to the table below for information.

Function	Description	
On	Turn on/off system	
Off	Keep system status	

Power button LED	Description
Orange	System shut down
Blue	System power on
Blinking 4 times on cycle	Input power under Low Voltage

Function	Description			
Program LED 1	User defined green (On/Off/Blinking)*1			
Program LED 2	User defined green (On/Off/Blinking)*1			
Program LED 3	User defined green (On/Off/Blinking)*1			
HDD LED	HDD Read/Write, Green blinking			

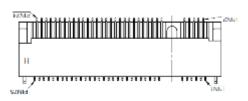


Note: For usage details, please contact the Axiomtek service window

1.8.14 Extended control Connector (CN12)

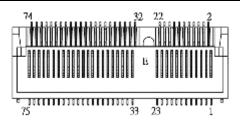
The system has one 4-pin connector output for extended control Function .

Pins	Signals
1	GND
2	PLED Power Out (Driver current Max: +3.3V/20mA)
3	EX SW Touch to GND : Turn on/off system
4	IGN (Max: +30V DCin)*1



Note: For detailed functions, refer to the IGN chapter

1.8.15 MIO530 Module Kit, M.2 Key B+M.2 Key E (Q670 sku Only)


Key B

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
1	CONFIG_3	2	+3.3V	3	GND	4	+3.3V
5	GND	6	Full Card PWR OFF	7	USB_D+	8	W_DISABLE1#
9	USB_D-	10	GPIO_9	11	GND	12	Key B
13	Key B	14	Key B	15	Key B	16	Key B
17	Key B	18	Key B	19	Key B	20	GPIO_5
21	CONFIG_0	22	GPIO_6	23	GPIO_11	24	GPIO_7
25	DPR	26	GPIO_10	27	GND	28	GPIO_8
29	USB3.1-Tx-	30	UIM-RESET	31	USB3.1-Tx+	32	UIM-CLK (O)
33	GND	34	UIM-DATA (I/O)	35	USB3.1-Rx-	36	UIM-PWR (O)
37	USB3.1-Rx+	38	NC	39	GND	40	GPIO_0
41	PERn0	42	GPIO_1	43	PERp0	44	GPIO_2
45	GND	46	GPIO_3	47	PETn0	48	GPIO_4
49	PETp0	50	PERST#	51	GND	52	CLKREQ#
53	REFCLKn	54	PEWAKE#	55	REFCLKp	56	NC
57	GND	58	NC	59	ANTCTL0	60	COEX3
61	ANTCTL1	62	COEX_RXD	63	ANTCTL2	64	COEX_TXD
65	ANTCTL3	66	SIM_DETECT	67	RESET# (I)(0/1.8V)	68	SUSCLK
69	CONFIG_1	70	+3.3V	71	GND	72	+3.3V
73	GND	74	+3.3V	75	CONFIG_2		

Key E

Key Ŀ							
Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
1	GND	2	+3.3V	3	USB_D+	4	+3.3V
5	USB_D-	6	NC	7	GND	8	NC
9	NC	10	NC	11	NC	12	NC
13	NC	14	NC	15	NC	16	NC
17	NC	18	GND	19	NC	20	NC
21	NC	22	NC	23	NC	24	CONNECTOR KEY E
25	CONNECTOR KEY E	26	CONNECTOR KEY E	27	CONNECTOR KEY E	28	CONNECTOR KEY E
29	CONNECTOR KEY E	30	CONNECTOR KEY E	31	CONNECTOR KEY E	32	NC
33	GND	34	NC	35	PETp0	36	NC
37	PETn0	38	NC	39	GND	40	NC
41	PERp0	42	NC	43	PERn0	44	NC
45	GND	46	NC	47	REFCLKp0	48	NC
49	REFCLKn0	50	SUSCLK	51	GND	52	PERST0#
53	CLKREQ0#	54	W_DISABLE2#	55	PEWAKE0#	56	W_DISABLE1#
57	GND	58	I2C_DATA	59	NC	60	I2C_CLK
61	NC	62	ALERT#	63	GND	64	NC
65	NC	66	NC	67	NC	68	NC
69	GND	70	NC	71	NC	72	+3.3V
73	NC	74	+3.3V	75	GND		

1.8.16 Flexible IO - AX93511

The system has an optional four serial port module. COM1~COM4 are RS-232/422/485 ports. Please refer to Chapter 3 for the details of BIOS setting.

*RS-232/422/485 can be configured via BIOS settings

%COM2,COM3,COM4,COM5

Pins	RS-232	RS-422	RS-485	
1	DCD, Data Carrier Detect	TX-	Data-	
2	RXD, Receive Data	TX+	Data+	
3	TXD, Transmit Data	RX+	No use	
4	DTR, Data Terminal Ready	RX-	No use	
5	GND, Ground	No use	No use	
6	DSR, Data Set Ready	No use	No use	
7	RTS, Request To Send	No use	No use	
8	CTS, Clear To Send	No use	No use	
9	RI, Ring Indicator	No use	No use	

1.8.17 Flexible IO - AX93512

The system has an optiona module which comes equipped two serial ports and DIO ports. COM1~COM2 are RS-232/422/485 with isolated 1.5KVDC protection and DIO1~DIO2 8-in/8-out isolated 1.5KVDC DIO ports.

*RS-232/422/485 can be configured via BIOS settings

%COM2,COM3,DIO1,DIO2

Pins	RS-232	RS-422	RS-485	
1	DCD, Data Carrier Detect	TX-	Data-	
2	RXD, Receive Data	TX+	Data+	
3	TXD, Transmit Data	RX+	No use	
4	DTR, Data Terminal Ready	RX-	No use	1 2 3 4 5
5	GND, Ground	No use	No use	• 0 0 0 0 0
6	DSR, Data Set Ready	No use	No use	6 7 8 9 10
7	RTS, Request To Send	No use	No use	
8	CTS, Clear To Send	No use	No use	
9	RI, Ring Indicator	No use	No use	
10	GND_EARTH	No use	No use	

Digital I/O Specification (per port)

Note: The RS-485 only support below communicate data format:

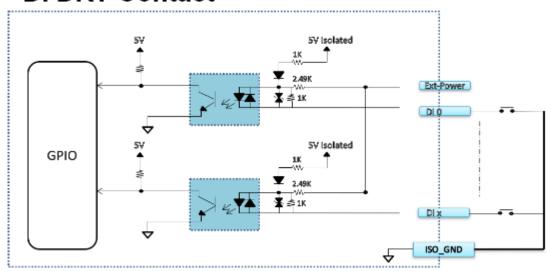
8 data bits + 1 stop bit

8 data bits + 1 parity bit + 1 stop bit

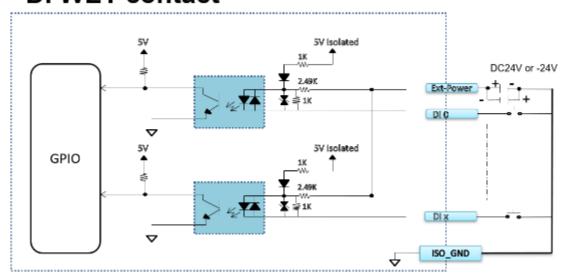
8 data bits + 1 parity bit + 2 stop bits

8 data bits + 2 stop bits

7 data bits + 1 parity bit (even or odd) + 2 stop bits


	DIO1	DIO2	
Pin	Function	Pin	Function
1	Common1 PWR+	1	Common2 PWR+
2	DO10	2	DO20
3	DO11	3	DO21
4	DO12	4	DO22
5	DO13	5	DO23
6	Common1 PWR-	6	Common2 PWR-
7	External1 Power	7	External2 Power
8	DI10	8	DI20
9	DI11	9	DI21
10	DI12	10	DI22
11	DI13	11	DI23
12	Isolation1 GND	12	Isolation2 GND

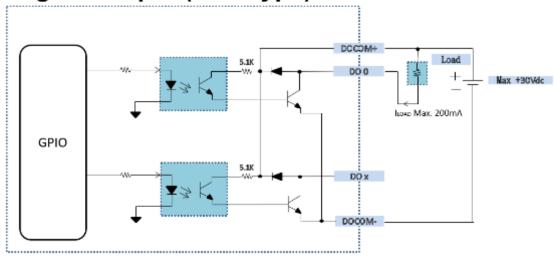
Isolated Digital Input


The diagram shows how to connect external input sources and systems.

Each isolated digital input channel accepts 0~30 VDC.

DI DRY Contact

DI WET contact


Isolated Digital Output

The figure shows how to connect between an output channel and the system.

If an external voltage Max +30VDC is applied to an isolated output channel, the current will flow from the external voltage source to the system.

Please note that the current through each DO channel should not exceed 200 mA.

Digital Output (Sink type)

1.8.18 Flexible IO - AX93516

The system has an optional four serial ports module. COM1~COM4 are RS-232/422/485 with 2KVDC isolation protection. Please refer to Chapter 4 for the details of BIOS setting.

%COM2,COM3,COM4,COM5

*RS-232/422/485 can be configured via BIOS settings

Pins	RS-232	RS-422	RS-485	
1	DCD, Data Carrier Detect	TX-	Data-	
2	RXD, Receive Data	TX+	Data+	
3	TXD, Transmit Data	RX+	No use	
4	DTR, Data Terminal Ready	RX-	No use	1 2 3 4 5
5	GND, Ground	No use	No use	
6	DSR, Data Set Ready	No use	No use	
7	RTS, Request To Send	No use	No use	6 7 8 9 10
8	CTS, Clear To Send	No use	No use	
9	RI, Ring Indicator	No use	No use	
10	GND_EARTH	No use	No use	

Digital I/O Specification (per port)

Note: The RS-485 only support below communicate data format:

8 data bits + 1 stop bit

8 data bits + 1 parity bit + 1 stop bit

8 data bits + 1 parity bit + 2 stop bits

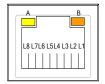
8 data bits + 2 stop bits

7 data bits + 1 parity bit (even or odd) + 2 stop bits

1.8.19 Flexible IO - AX93519

The system has an optional two serial ports module. 2 RS-232/422/485, 2 USB and one LAN. Please refer to Chapter 4 for the details of BIOS setting.

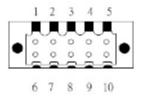
XCOM2,COM3


*RS-232/422/485 can be configured via BIOS settings

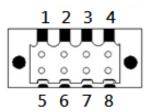
Pins	RS-232	RS-422	RS-485	
1	DCD, Data Carrier Detect	TX-	Data-	
2	RXD, Receive Data	TX+	Data+	
3	TXD, Transmit Data	RX+	No use	(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4	DTR, Data Terminal Ready	RX-	No use	الره ومرمه وم
5	GND, Ground	No use	No use	
6	DSR, Data Set Ready	No use	No use	
7	RTS, Request To Send	No use	No use	
8	CTS, Clear To Send	No use	No use	
9	RI, Ring Indicator	No use	No use	

Pins	Signal USB Port 0	Pins	Signal USB Port 1
1	USB_VCC (+5V level standby power)	1	USB_VCC (+5V level standby power)
2	USB_Data2-	2	USB_Data3-
3	USB_Data2+	3	USB_Data3+
4	GND	4	GND
5	SSRX2-	5	SSRX3-
6	SSRX2+	6	SSRX3+
7	GND	7	GND
8	SSTX2-	8	SSTX3-
9	SSTX2+	9	SSTX3+

Pins	1000 Base-T	100/10 Base-T	Descriptions		
L1	BI_DA+	TX+	Bidirectional or Transmit Data+		
L2	BI_DA-	TX-	Bidirectional or Transmit Data-		
L3	BI_DB+	RX+	Bidirectional or Receive Data+		
L4	BI_DC+	N.C.	Bidirectional or Not Connected		
L5	BI_DC-	N.C.	Bidirectional or Not Connected		
L6	BI_DB-	RX-	Bidirectional or Receive Data-		
L7	BI_DD+	N.C.	Bidirectional or Not Connected		
L8	BI_DD-	N.C.	Bidirectional or Not Connected		
А	Active Link LED (Yellow) Off: No link Blinking: Data activity detected				
В	Speed LED 1000: Orange 100: Green 10: OFF				


1.8.20 Flexible IO - MIO160

The system has an optional module to support six serial port (4-wire RS-232: TX/RX/RTS/CTS)/422/485 isolated 1.5kVDC and two CAN bus with isolated 1.5kVDC (CAN 2.0A and CAN2.0B protocol).. Please refer to Chapter 4 for the details of BIOS setting.


※COM2,COM3,COM4,COM5, COM6, COM7

*RS-232/422/485 can be configured via BIOS settings

	CN1 (COM1 ~ COM6)				
Pins	RS-232	RS-422	RS-485		
1	GND, Ground	GND, Ground	GND, Ground		
2	RTS, Request To Send	RX-	No use		
3	TXD, Transmit Data	RX+	No use		
4	CTS, Clear To Send	TX-	D-		
5	RXD, Receive Data	TX+	D+		
6	GND, Ground	GND, Ground	GND, Ground		
7	RTS, Request To Send	RX-	No use		
8	TXD, Transmit Data	RX+	No use		
9	CTS, Clear To Send	TX-	D-		
10	RXD, Receive Data	TX+	D+		

	CN4 (CAN1 & CAN2)				
Pins	CAN				
1	vcc				
2	CAN-H				
3	CAN-L				
4	GND, Ground				
5	vcc				
6	CAN-H				
7	CAN-L				
8	GND, Ground				

1.8.21 Riser card - EIO121, EIO122, EIO141, EIO142

IPC962A and IPC964A has a riser module to support PCIe and PCI slots.

Note: Please refer to chapter 1.2.3 for the riser specifications.

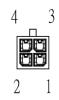
Note: Please refer to chapter 1.2.3 for the maximum power rating limitation of riser.

Note: 4-pin power connector is reserved for Axiomtek device only.

Fan Connectors (FAN1~FAN2)

This motherboard has three fan connectors. Find fan speed option(s) at BIOS Setup Utility: Advanced HW Monitor PC Health Status.

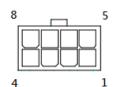
The FAN1~2 (4x1-Pin P=2.54mm) is for the expansion Slot fan connector.


Pins	Signals
1	GND
2	+12V
3	FAN Speed Detection
4	FAN Speed Control

Expansion Power Input Connectors (ATX1)

This ATX1 connector for reserved uses. (Black color)

Pins	Signals
1	GND
2	GND
3	+24V (By DCIN)
4	+24V (By DCIN)



Note: ATX1 is reserved, please contact Axiomtek before using it.

Expansion Power Input Connectors (ATX2 ~ ATX3)

This ATX2~3 connector for slot card uses. (Black color)

Pins	Signals
1	GND
2	GND
3	GND
4	GND
5	+12V
6	+12V
7	+12V
8	GND

Temperature Sensor Source Select (JP1)

Use these jumpers (3x1-Pin P=2.54mm) to set temperature sensor source to operate external or onboard mode.

Onboard Sensor (Default) 1-2 close

	,	
Function	Setting	
1	On Board	
	Thermistor	
2	GND	
3	Reserved	

Note: Pin 3 is reserved, please contact Axiomtek before using it.

This page is intentionally left blank.

SECTION 2 HARDWARE INSTALLATION

The IPC960A/IPC962A/IPC964A Series products are convenient for your various hardware configurations, such as CPU (Central Processing Unit), memory module, HDD (Hard Disk Drive) and PCIe/PCI card. Chapter 2 will show you how to install these hardware parts.

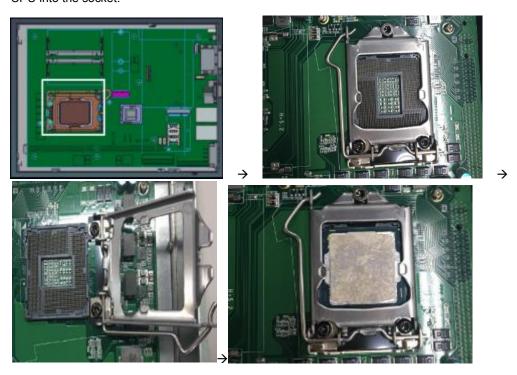
2.1 Installing the Processor

The Intel® Core™ i7/i5/i3 processors are available as a boxed processor for the IPC960A / IPC962A / IPC964A system. Intel recommends the processors should be installed by a qualified computer professional since this electronic device may cause serious damage to the installer, system and processor if installed improperly.

Note: Before attempting to install a new processor, carefully review the documentation that came with your system and make sure that you will not be voiding your warranty by opening the computer or replacing your processor.

Instructions:

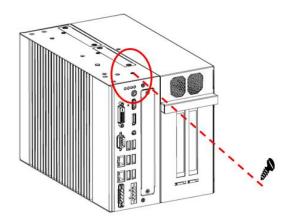
- 1. Make sure that your system can accommodate the Intel® Core™ i7/i5/i3/Celeron® processor that you want to install. Check for CPU card, BIOS, and thermal compatibility by using the manufacturer's documentation for the system, or by contacting the vendor if necessary. This processor should only be installed in systems supporting the Intel® Core™ i7/i5/i3/Celeron® processors.
- 2. Obtain access to your processor socket as described in the documentation for your system.
- If the cooling solution prevents you from accessing the processor socket, you may need to remove
 it. Instructions on how to remove your cooling solution should be provided in the documentation that
 came with the system.

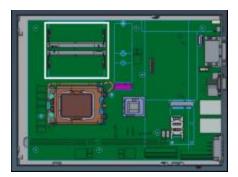

2.2 Procedure of Installation

This chapter will guide you on installing a processor.

- Step 1 Turn off the system.
- Step 2 Disconnect the power connector.
- Step 3 Loosen six screws to remove the heatsink cover from the chassis.

Step 4 After opening the heatsink cover, you can locate the CPU socket as marked. Align pins of the CPU with the pin holes of the socket. Beware of the CPU's orientation when you align the arrow mark on the CPU with the arrow key on the socket. Remove the Mylar before you install the CPU into the socket.

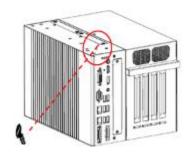

Step 5 Apply thermal grease on top of the CPU.


Step 6 After installing all components, close the heatsink cover back to the chassis and fasten all screws.

2.3 Installing the Memory Module

- Step 1 Paste the thermal pad on the bottom side of the module. Remember to remove the protective film from the thermal pad.
- Step 2 Turn off the system.
- Step 3 Disconnect the power connector.
- Step 4 Loosen screws to remove the heatsink cover from the chassis.

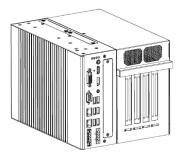
Step 5 Insert the module to slot and push it down firmly.



- Step 6 Paste the other thermal pad on the module and then remove the protective film.
- Step 7 Close the heatsink cover back to the chassis and fasten all screws. The installation is complete.

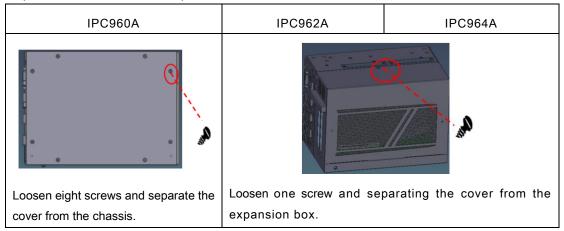
2.4 Installing the Hard Disk Drive

The IPC960A/IPC962A/IPC964A offers two convenient drive bay modules for users to install HDD/SSD. The system offers users two 2.5" Hard Disk Drives for installation. Please follow the steps to install:


- Step 1 Turn off the system.
- Step 2 Disconnect the power connector.
- Step 3 Unscrew 2 screws for each HDD tray and separating the HDD tray from the chassis.

Step 4 Fix HDD/SSD to the HDD tray with four screws

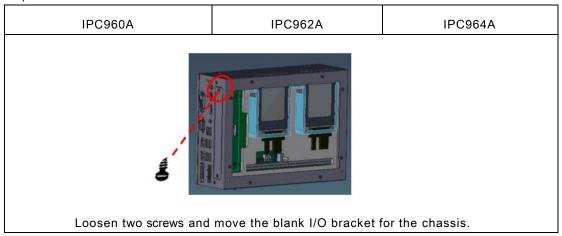
Step 5 Insert HDD tray to main box, then screw 2 screws for each HDD tray. Installation is complete.

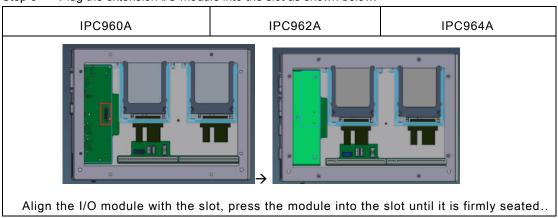


2.5 Installing the extension I/O module

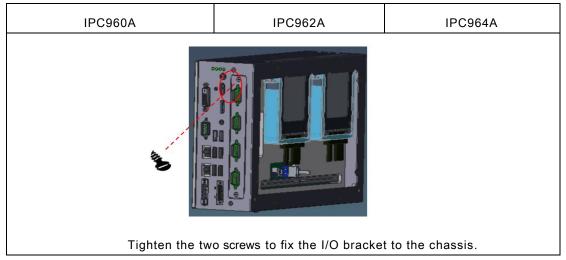
The IPC960A/IPC962A/IPC964A provides an optional extension I/O module for expansion purposes. The procedures of installing the extension I/O module into system is instructed below.

- Step 1 Turn off the system.
- Step 2 Disconnect the power connector.

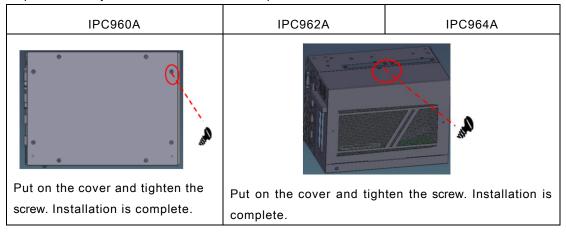

Step 3 Loosen screws and separate the cover from the chassis.


Step 4 Remove the expansion box as shown below.

IPC960A	IPC962A	IPC964A	
N/A			
	Loosen four screws and sep	parating expansion box from	
	the chassis.		

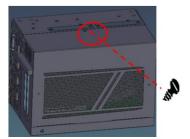

Step 5 Remove the blank I/O bracket as shown below.

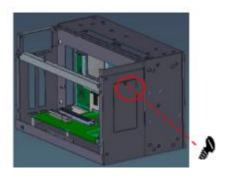
Step 6 Plug the extension I/O module into the slot as shown below.


Step 7 Screw the extension I/O bracket into system as shown below.

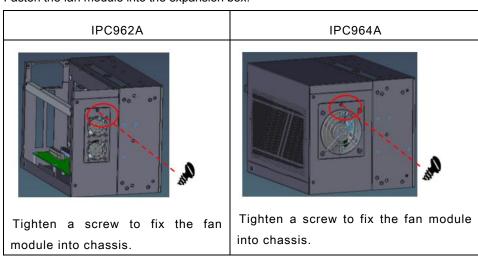
Step 8 Fasten the expansion box to IPC962A and IPC964A as shown below.

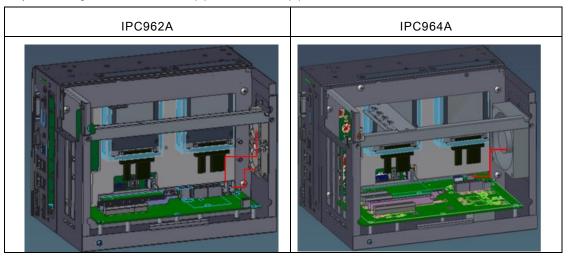
IPC960A	IPC962A	IPC964A	
N/A			
	Tighten the four screws to f	x expansion box with the	
	chassis.		


Step 9 Fasten system cover. Installation is complete.


2.6 Installing the Fan Module

The IPC962A/IPC964A provides either an internal fan module or an external fan module for optional selection. The procedure of installing the fan module into system is instructed below.

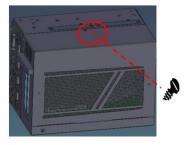

- Step 1 Turn off the system.
- Step 2 Disconnect the power connector.
- Step 3 Loosen the system cover screw and remove the cover from the expansion box.


Step 4 Loosen the screw to remove the bracket.

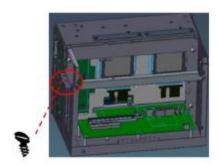
Step 5 Fasten the fan module into the expansion box.

Step 6 Plug fan module cable(s) to connector(s).

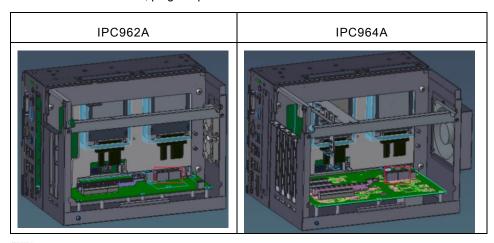
Step 7 After installing the fan module, close the system cover back to the chassis and fasten the screw. Installation is complete.


Note: Reserve at least 25mm space from the rear side for optimal fan air flow.

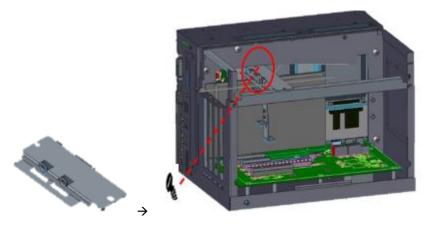
Installing PCI or PCIe Card 2.7


The IPC962A/IPC964A provides two/four PCI or PCIe slots for expansion. The procedure of installing PCI / PCIe expansion cards into system is instructed below.

2.7.1 Installing PCI or PCIe card

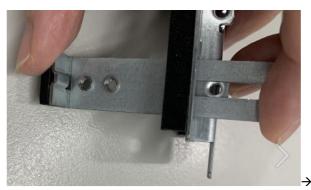

- Step 1 Turn off the system.
- Step 2 Disconnect the power connector.
- Step 3 Loosen the system cover screw and remove the cover from the expansion box.

Step 4 Locate the PCI or PCIe slots and remove the slot bracket from the slot in which you want to add the card.



Step 5 Align the PCI or PCIe card with the slot, press the card into the slot until it is firmly seated and screw it. Then, plug the power cable in connector if needed as instructed below in red.

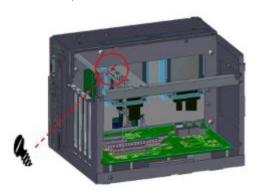
Note: The power cable will be needed when the graphics card power is over 75W.


Step 6 Please take the holder bracket and screws from the accessory box. Fasten the below bracket in chassis with standard height (116.38mm) add-on cards.

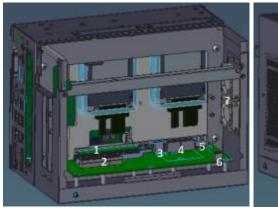
Step 7 IPC962A and IPC964A offer 3 types of extension holder brackets. Please take the brackets and screws from the accessory box and assemble the extension holder bracket. The procedure is illustrated below.

Step 8 Assemble the extension holder bracket, as illustrated below.

Or


 \rightarrow

Step 9 Fasten the holder bracket in the chassis, adjust the screw position of the extension bracket to fix the add-on card, and then screw it.



Step 10 Close the cover back to the chassis and tighten the screw. The installation is complete.

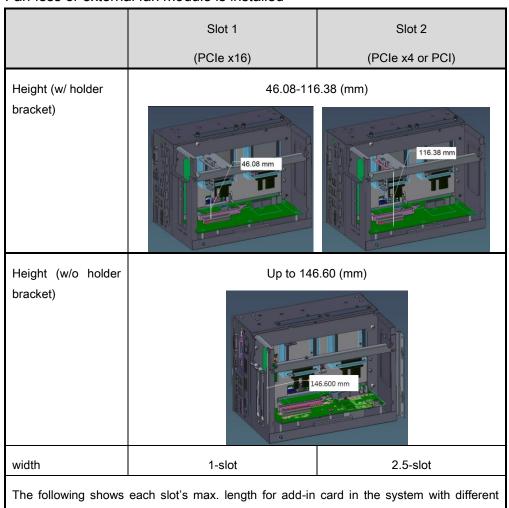
2.7.2 The limitation of an add-on card

The following figures show the limitation of an add-in card in different configuration.

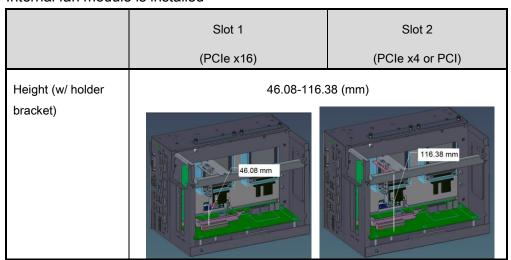
IPC962A

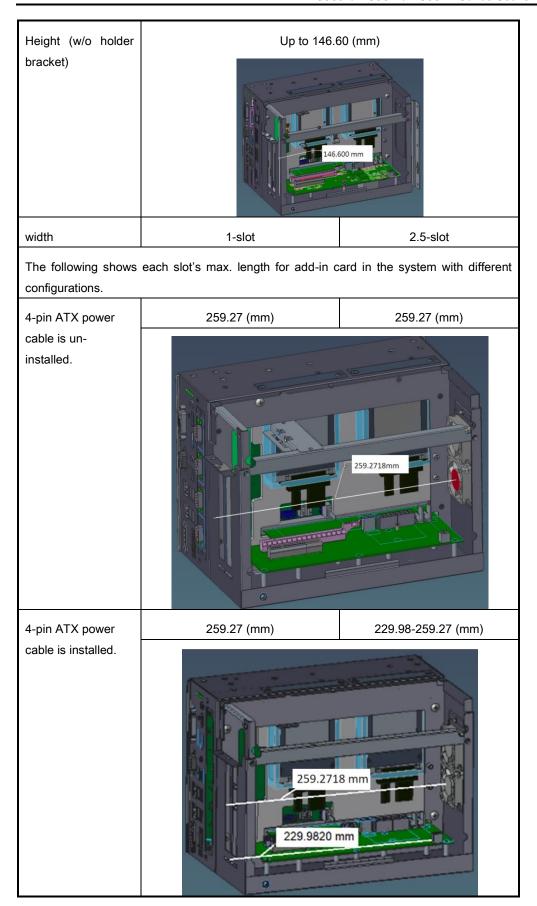
No.	Description	No.	Description
1	Slot 1: PCle x 16	5	2 fan connector
2	Slot 2: PCle x8 or PCl	6	4-pin power connector
3	USB 2.0 type A	7	Internal fan module
4	2 8-pin power connector of EIO121 or EIO122 (riser card)	8	External fan module

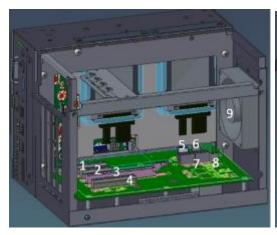
Note: Please note that below dimension is the maximum length for add-on card with I/O bracket.

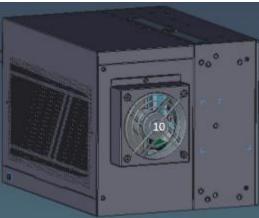

Note: Considering heat dissipation potential, a space of 20mm must be left between add-on card and system.

configurations.


Note: The followings show each slot's max. dimensions for add-in card and its cable routing in the system.


Fan-less or external fan module is installed

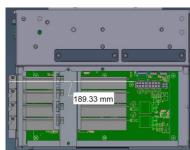

4-pin ATX power cable is uninstalled. 264.2718 mm 4-pin ATX power 264.27 (mm) 229.98-264.27 (mm) cable is installed. 229.9820 mm


Internal fan module is installed

IPC964A

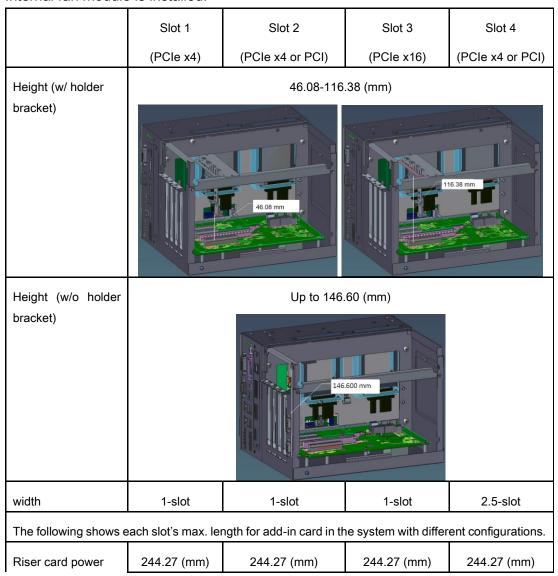
No.	Description	No.	Description
1	Slot 1: PCIe x 4	6	Fan connector
2	Slot 2: PCIe x 4 or PCI	7	2 8-pin power connector of EIO121 or EIO122 (riser card)
3	Slot 3: PCIe x16	8	4-pin power connector
4	Slot 4: PCIe x8 (x4 signal) or PCI	9	Internal fan module
5	USB 2.0 type A	10	External fan module

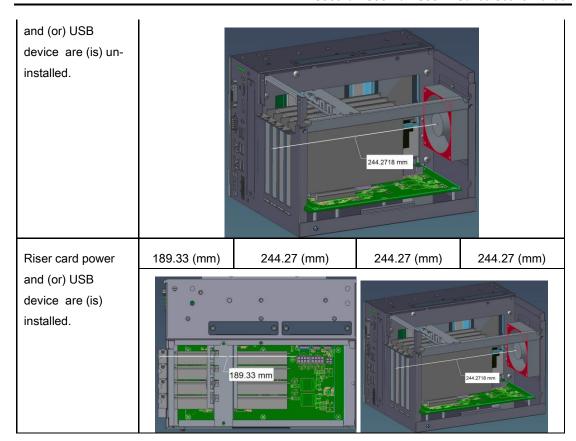
Note: Please note that below dimension is the maximum length for add-on card with I/O bracket. and power cable routing.



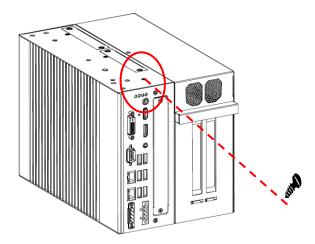
Note: Considering heat dissipation potential, a space of 20mm must be left between add-on card and system.

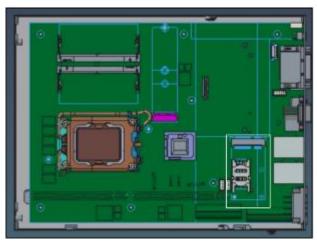
Fan-less or external fan module is installed.


an-iess or external fan module is installed.					
	Slot 1	Slot 2	Slot 3	Slot 4	
	(PCIe x4)	(PCIe x4 or PCI)	(PCIe x16)	(PCIe x4 or PCI)	
Height (w/ holder	46.08-116.38 (mm)				
bracket)	46.08 mm				
Height (w/o holder	Up to 146.60 (mm)				
bracket)		146	.600 mm		
width	1-slot	1-slot	1-slot	2.5-slot	
The following shows e	each slot's max. ler	ngth for add-in card in th	ne system with differ	ent configurations.	
Riser card power	264.27 (mm)	264.27 (mm)	264.27 (mm)	264.27 (mm)	
and (or) USB device are (is) un- installed.			264.2718 mm		
Riser card power	189.33 (mm)	264.27 (mm)	264.27 (mm)	264.27 (mm)	


and (or) USB device are (is) installed.

Internal fan module is installed.




2.8 Installing the Mini Card Module

The IPC960A, IPC962A and IPC964A come equipped with a mini card slot for users to install a wireless LAN card. Please refer to the following instructions and illustrations for the installation of the wireless LAN.


- Step 1 Please take the wireless LAN card and external antenna(s) from the accessory box.
- Step 2 Turn off the system.
- Step 3 Disconnect the power connector.
- Step 4 Loosen six screws to remove the heatsink cover from the chassis.

Step 5 Insert the wireless LAN card into the slot and push it down firmly, install the card tightly to the mainboard, and then plug internal wireless cable(s) into wireless LAN card.

Step 6 Remove the antenna plug(s), and then screw the antenna(s) on the system.

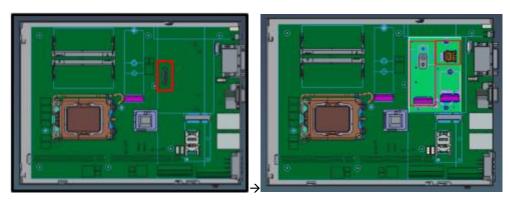
Step 7 Close the heatsink cover to the chassis and fasten all screws. The installation is complete.

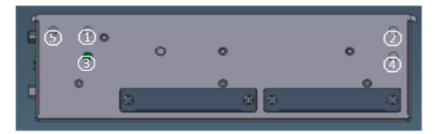
Note: Please use an extended bracket when using a half-size Mini card

Note: There are five antenna holes in the system, please adjust the antenna placement according to the environment.


Installing the 5G Wireless Module 2.9

The IPC960A, IPC962A and IPC964A comewith an optional M.2 Key B 3042/3050/3052 slot via MIO530 daughter board for users to install a 5G wireless card. Please refer to the following instructions and illustrations for the installation of the 5G wireless module.


Step 1 Please take the 5G module kit from the accessory box.


- Step 2 Paste the thermal pads on the bottom(B) and top side(A) of the module, remember to remove the protective films from the thermal pads.
- Step 3 Turn off the system.
- Step 4 Disconnect the power connector.
- Step 5 Loosen screws to remove the heatsink cover from the chassis.

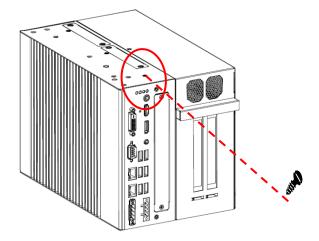
Step 6 Insert the MIO530 board to socket, then insert 5G wireless module into the slot and push it down firmly, tighten the card securely to the mainboard, and then pulg the internal 5G internal wireless cables into module. Insert SIM card into SIM slot.

Step 7 Remove the antenna plugs from the top of the system, and install the external antennas.

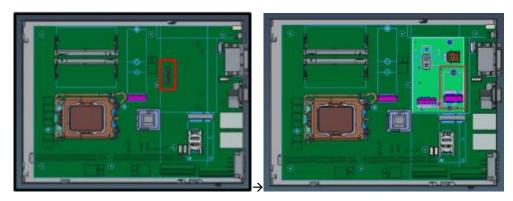
Step 8 Close the heatsink cover to the chassis and fasten all screws. The installation is complete.

Note: Only Q670E platforms can support an M.2 Key B slot.

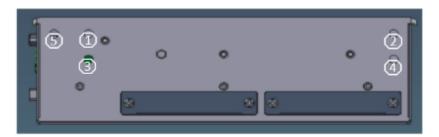
Note: The thermal solution might be changed due to the different 5G module installed.



Note: There are five antenna holes on the system, please adjust the antenna placement accordingly.

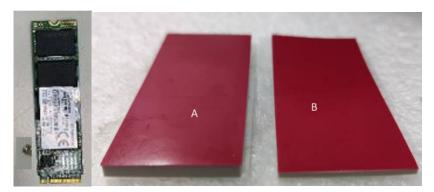

2.10 Installing the M.2 key E Wireless Module

The IPC960A, IPC962A and IPC964A come equipped with an optional M.2 Key E 2232 slot via MIO530 daughter board for users to install a wireless LAN card. Please refer to the following instructions and illustrations for the installation of the wireless LAN.

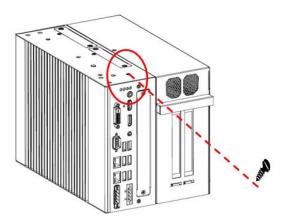

- Step 1 Please take the wireless LAN card and external antenna(s) from the accessory box.
- Step 2 Turn off the system.
- Step 3 Disconnect the power connector.
- Step 4 Loosen six screws to remove the heatsink cover from the chassis.

Step 5 Insert the MIO530 board to socket, then insert wireless LAN module into the slot and push it down firmly, install the card securely to the mainboard, and then pulg the internal 5G internal wireless cables into module.

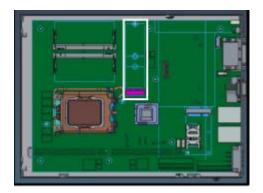
Step 6 Remove the antenna plug(s), and then screw the antenna(s) on the system.


Step 7 Close the heatsink cover to the chassis and fasten all screws. The installation is complete.

Note: There are five angtenna holes in the system, please adjust the antenna placement according to the environment.


2.11 Installing the NVMe SSD Module

The IPC960A, IPC962A and IPC964A come equipped with an M.2 Key M 2280 socket (PCIe Gen4 x4) for users to install an NVMe SSD module. Please refer to the following instructions and illustrations for the installation of the NVMe SSD module.


Paste the thermal pads on the bottom(B) and top side(A) of the module, remember to remove Step 1 the protective films from the thermal pads.

- Turn off the system. Step 2
- Step 3 Disconnect the power connector.
- Step 4 Loosen screws to remove the heatsink cover from the chassis.

Step 5 Insert the SSD card to slot and push it down firmly. Then fasten the card tightly to the mainboard.

- Step 6 Paste the other thermal pad on the module and then remove the protective film.
- Step 7 Close the heatsink cover back to the chassis and tighten all screws. The installation is complete.

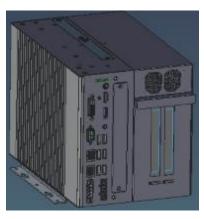
2.12 Mounting

TheIPC960A/IPC962A/IPC964A provides versatile mount kits for optional selection.

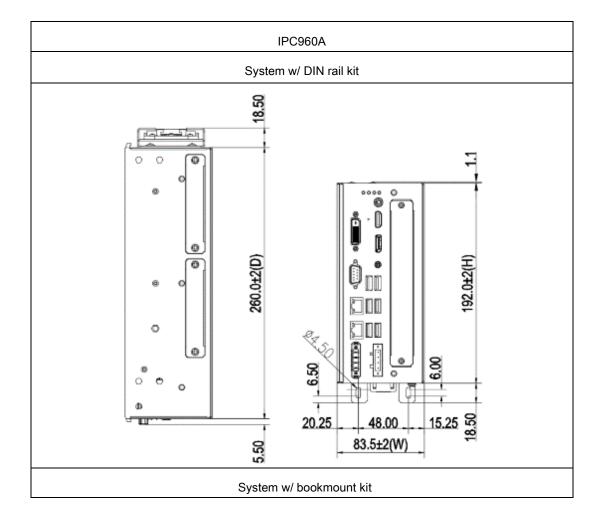
DIN rail mount

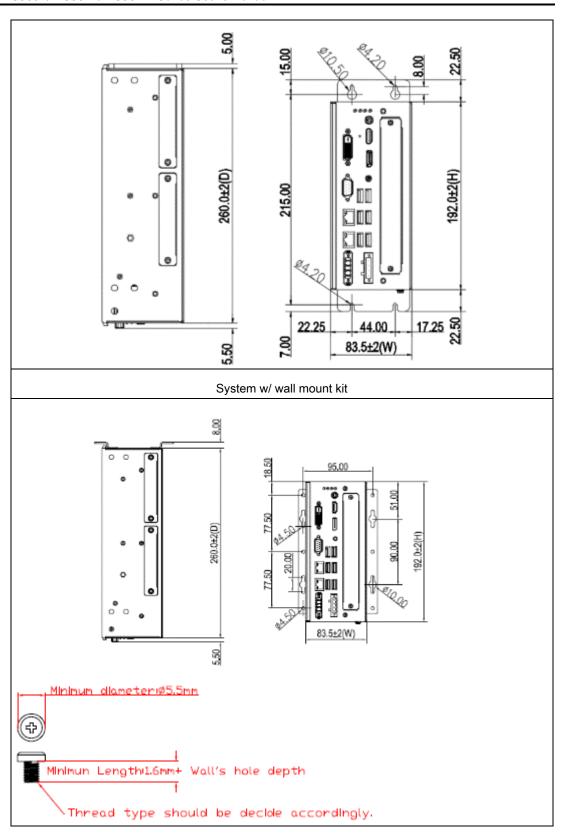
Note: The DIN rail kit can be installed in IPC960A system only.

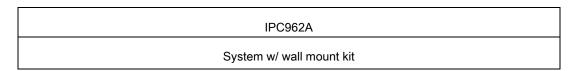
bookmount

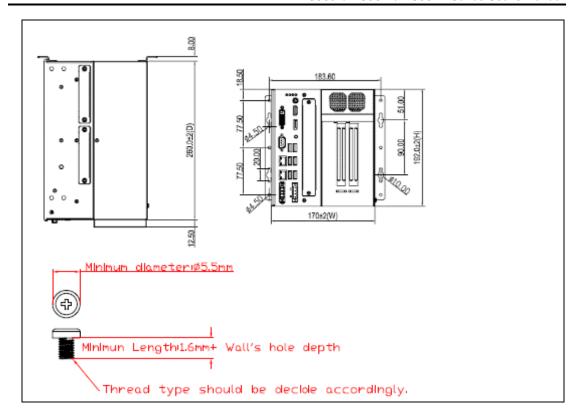


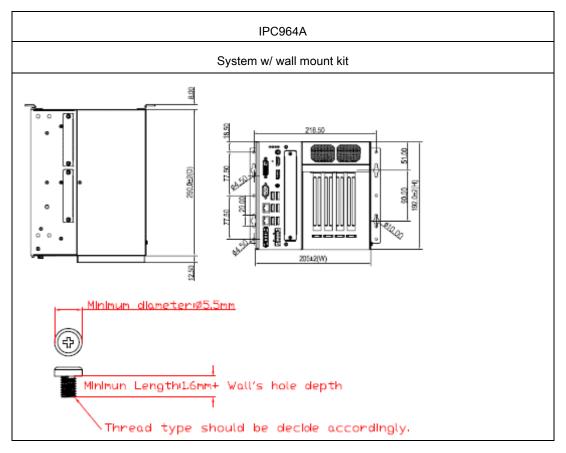
Note: The bookmount kit can be installed in IPC960A system only.


Wall mount








Note: The IPC960A supports any of DIN rail kit, bookmount kit or wall mount kit.

SECTION 3 AMI BIOS UTILITY

The AMI UEFI BIOS provides users with a built-in setup program to modify basic system configuration. All configured parameters are stored in a 16MB flash chip to save the setup information whenever the power is turned off. This chapter provides users with detailed description about how to set up basic system configuration through the AMI BIOS setup utility.

3.1 Starting

To enter the setup screens, follow the steps below:

- 1. Turn on the computer and press the key immediately.
- 2. After you press the key, the main BIOS setup menu displays. You can access the other setup screens from the main BIOS setup menu, such as the Advanced and Chipset menus.

Note: If your computer cannot boot after making and saving system changes with Setup, you can restore BIOS optimal defaults by setting JP1 (see section 1.6.2).

It is strongly recommended that you should avoid changing the chipset's defaults. Both AMI and your system manufacturer have carefully set up these defaults that provide the best performance and reliability.

Navigation Keys 3.2

The BIOS setup/utility uses a key-based navigation system called hot keys. Most of the BIOS setup utility hot keys can be used at any time during the setup navigation process. These keys include <F1>, <F2>, <Enter>, <ESC>, <Arrow> keys, and so on.

Note: Some of the navigation keys differ from one screen to another.

Hot Keys	Description
→← Left/Right	The Left and Right <arrow> keys allow you to select a setup screen.</arrow>
↑↓ Up/Down	The Up and Down <arrow> keys allow you to select a setup screen or subscreen.</arrow>
+- Plus/Minus	The Plus and Minus <arrow> keys allow you to change the field value of a particular setup item.</arrow>
Tab	The <tab> key allows you to select setup fields.</tab>
F1	The <f1> key allows you to display the General Help screen.</f1>
F2	The <f2> key allows you to Load Previous Values.</f2>
F3	The <f3> key allows you to Load Optimized Defaults.</f3>
F4	The <f4> key allows you to save any changes you have made and exit Setup. Press the <f4> key to save your changes.</f4></f4>
Esc	The <esc> key allows you to discard any changes you have made and exit the Setup. Press the <esc> key to exit the setup without saving your changes.</esc></esc>
Enter	The <enter> key allows you to display or change the setup option listed for a particular setup item. The <enter> key can also allow you to display the setup sub- screens.</enter></enter>

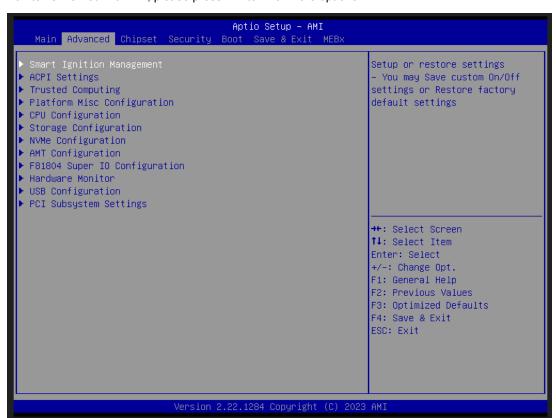
3.3 Main Menu

When you first enter the setup utility, you will enter the Main setup screen. You can always return to the Main setup screen by selecting the Main tab. System Time/Date can be set up as described below. The Main BIOS setup screen is shown below.

- BIOS Information
 Display the BIOS information.
- System Date/Time

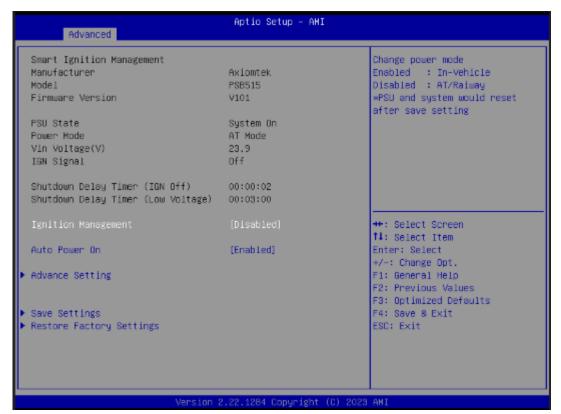
Use this option to change the system time and date. Highlight System Time or System Date using the <Arrow> keys. Enter new values through the keyboard. Press the <Tab> key or the <Arrow> keys to move between fields. The date must be entered in MM/DD/YY format. The time is entered in HH:MM:SS format.

Access Level
 Display the access level of current user.

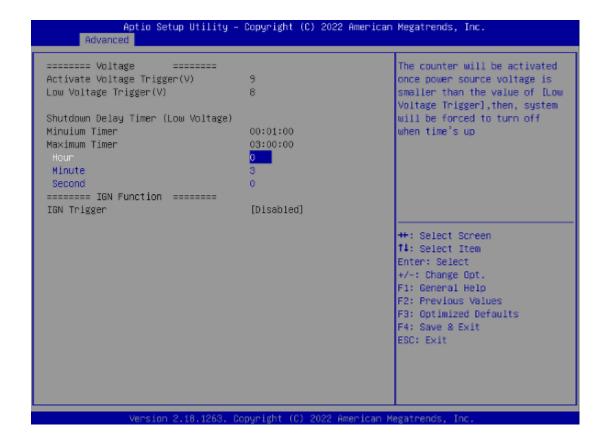

3.4 Advanced

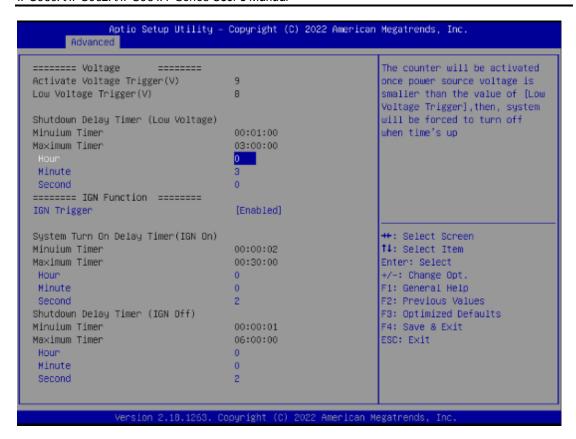
Advanced Menu

The Advanced menu also allows users to set configuration of the CPU and other system devices. You can select any of the items in the left frame of the screen to go to the sub menus:


- Smart Ignition Management
- ACPI Settings
- Trusted Computing
- Platform Misc Configuration
- CPU Configuration
- Storage Configuration
- NVMe Configuration
- AMT Configuration
- F81804 Super IO configuration
- Hardware Monitor
- USB Configuration
- PCI Subsystem Settings

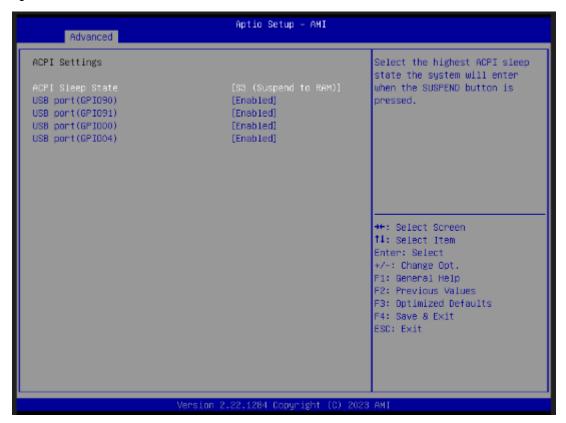
For items marked with "▶", please press <Enter> for more options.


Smart Ignition Configuration


Press Enter to access the sub-menu. Calculated based on the 24-hour military-time clock.

BIOS menu item	Description
Ignition Management	Enabled
	Switch to ACC mode
	*Note: IGN signal will only be triggered when DCIN Terminal Block 4-Pin IGN is connected with VCC.
	Disabled
	Switch to AT mode
	*Note: System will be reset after Ignition Management setting has been changed and saved.
Auto Power On	Enabled
	System will turn on automatically under following conditions
	- Manually disconnects and reconnects system power
	- Power interruption: Resumes power after power failure
	Disabled

	System will not turn on automatically when power is connected or when power resumes from a power failure
Advance Setting	Set system on/off timing and voltage threshold levels
Save Settings	Save the current settings
Restore Factory Settings	Restores factory defaults to remove any incorrect or corrupt settings that might have prevented the system from properly powering on/off.

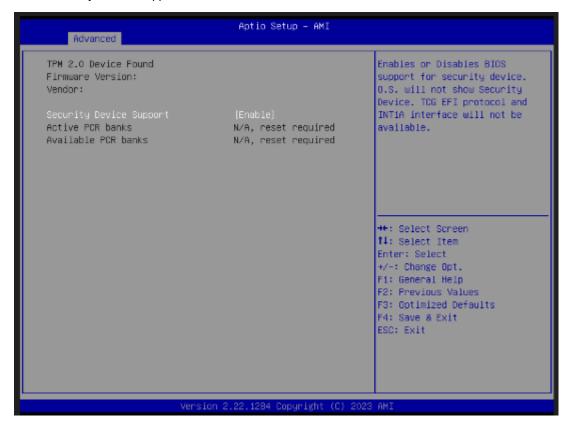


BIOS menu item	Description
Activate Voltage Trigger	The system only turns on when the voltage delivered by the power
	source is higher than the value you set here.
Low Voltage Trigger	The system will begin countdown stage once voltage drops below
	the value you set here.
	If the power source voltage does not come back above the value of
	[Activate Voltage Trigger] within the time you set for [Shutdown
	Delay Time (Low Voltage)], the system will shut down and remain
	off.
Shutdown Delay Timer (Low	The counter will be activated once power source voltage drops
Voltage)	below the value defined in [Low Voltage Trigger]. The system will be
	forced to turn off once timer completes countdown.
IGN Trigger	Enable
	[System Turn On Delay] and [Shutdown Delay] will be trigged by
	IGN.
	Disable
	IGN signal will not affect any power management.

ACPI Settings

ACPI configuration can be configured in ACPI Settings. A description of the selected item appears on the right side of the screen.

ACPI Sleep State


Select the ACPI (Advanced Configuration and Power Interface) sleep state. Configuration options are Suspend Disabled and S3 (Suspend to RAM). The default is S3 (Suspend to RAM). This option selects the ACPI sleep state the system will enter when the suspend button is pressed.

USB Port

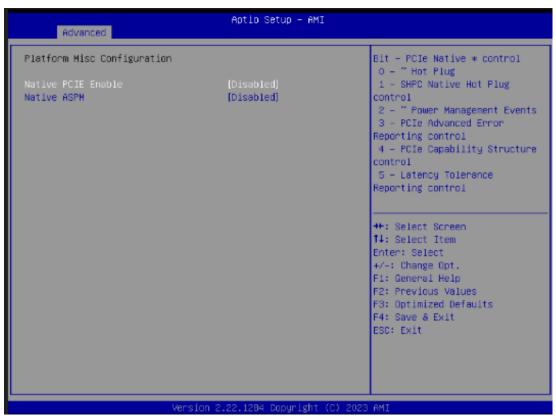
Set whether the USB Port needs to provide USB power in ACPI power saving mode. The default is on. For additional control methods, please contact Axiomtek

Trusted Computing

Select Security Device Support to enable or disable the TPM function.

TPM Device Selection

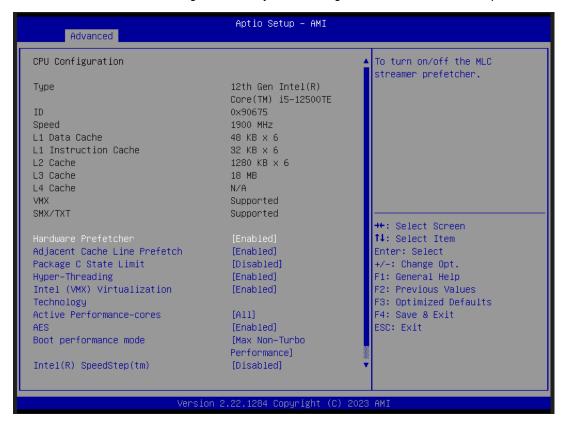
Select TPM device:


- PTT: Intel® built-in TPM. Enables PTT in SkuMgr.
- dTPM: External extended Infineon's TPM. Disables PTT in SkuMgr.

Security Device Support

Enable or disable BIOS support for security device. OS will not show security device. TCG EFI protocol and INT1A interface will not be available.

Platform Misc Configuration


This screen allows you to set Platform Misc Configuration.

- Native PCIE Enable
 - Enabled Enable PCIE power saving function, Disabled Disabled PCIE power saving function.
- Native ASPM
 - Enabled OS Controlled ASPM, Disabled BIOS Controlled ASPM.

CPU Configuration

This screen shows the CPU configuration, and you can change the value of the selected option.

Hardware Prefetcher

Turn on/off the MLC streamer prefetcher.

Adjacent Cache Line Prefetch

Turn on/off prefetching of adjacent cache lines.

Package C State Limit

Maximum Package C State Limit Setting. CPU Default: Sets to Factory default value. Auto: Initializes to deepest available Package C State Limit.

Hyper-Threading

Enable or disable Hyper-threading Technology, which allows a single physical processor to multitask as multiple logical processors. When disabled, only one thread per enabled core is enabled.

Intel Virtualization Technology

Enable or disable Intel Virtualization Technology. When enabled, a VMM (Virtual Machine Mode) can utilize the additional hardware capabilities. It allows a platform to run multiple operating systems and applications independently, hence enabling a single computer system to work as several virtual systems.

Active Performance Cores

Number of cores to enable in each processor package.

Active Efficient Cores

Number of E-cores to enable in each processor package. Note: Number of P-Cores and E-cores are counted together. When both are $\{0,0\}$, P-code will enable all cores.

AES

Enable / Disable AES (Advanced Encryption Standard)

Boot performance mode

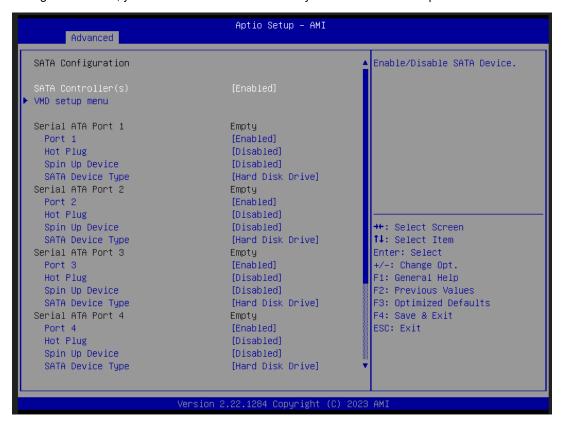
Select the performance mode that the BIOS will run after the reset.

Intel (R) SpeedStep(tm)

Allows more than two frequency ranges to be supported.

Turbo Mode

Allows to enable processor cores to raise the operating frequency.


Storage Configuration

This screen shows storage information.

SATA Configuration

During system boot up, the BIOS automatically detects the presence of SATA devices. In the SATA Configuration menu, you can see the hardware currently installed in the SATA ports.

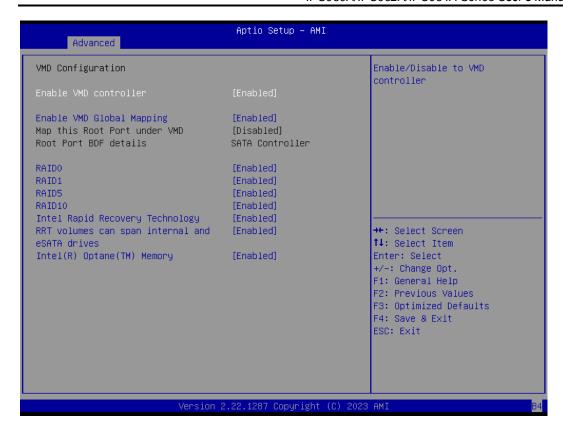
SATA Controller(s)

Enable or disable the SATA Controller feature. The default is Enabled.

VMD Setup Menu

VMD Configuration settings. The default is Disabled.

Hot Plug

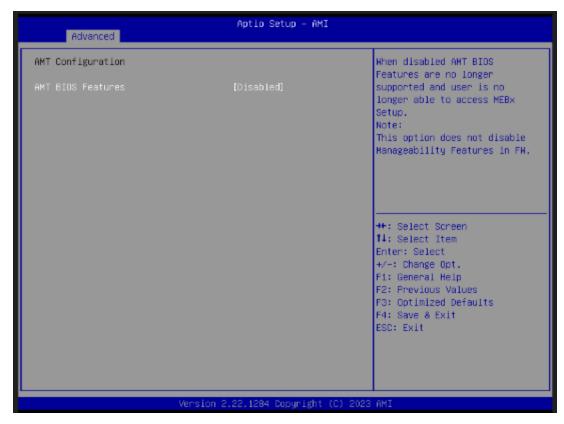

Designates this port as Hot Pluggable.

Spin Up Device

Staggered Spin Up will be performed when any of the drive is enabled for the performance strategy. Otherwise, all drives spin up at boot. Only HDD supports this function.

SATA Device Type

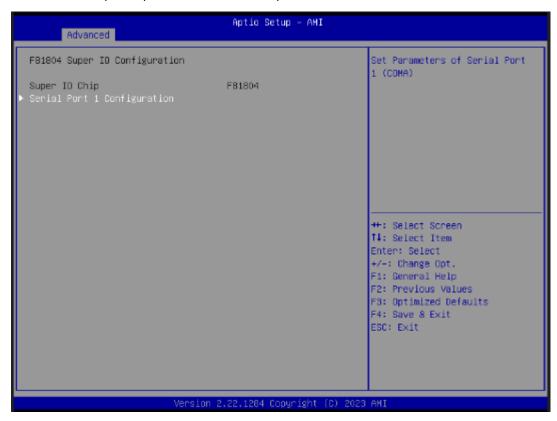
Identify the SATA port is connected to a solid-state drive (SSD) or hard disk drive (HDD).


NVMe Configuration

This screen shows NVMe device information.

AMT Configuration

This screen displays Active Management Technology information.

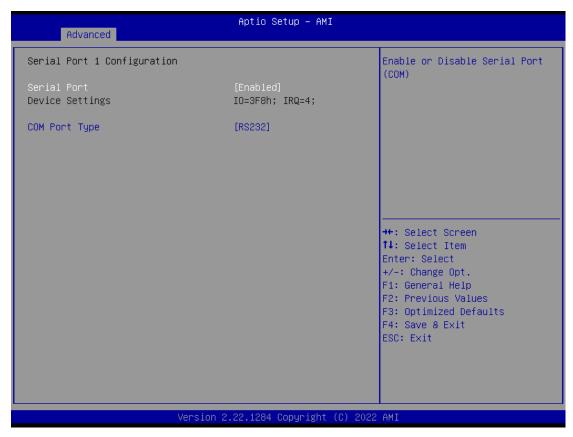


AMT BIOS Features

Enable or disable Active Management Technology BIOS features. The default is Enabled.

• F81804 Super IO Configuration

You can use this screen to select options for the Super IO Configuration, and change the value of the selected option. A description of the selected item appears on the right side of the screen. For items marked with "▶", please press <Enter> for more options.

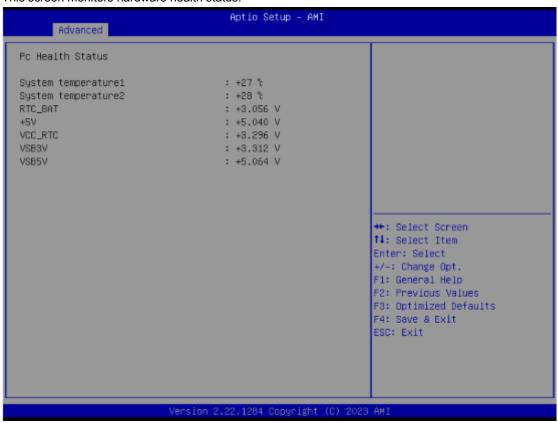


Serial Port 1

This item allows you to use it as RS232/422/485. The default is RS232.

Serial Port 1 Configuration

Use these items to set parameters related to serial port 1.

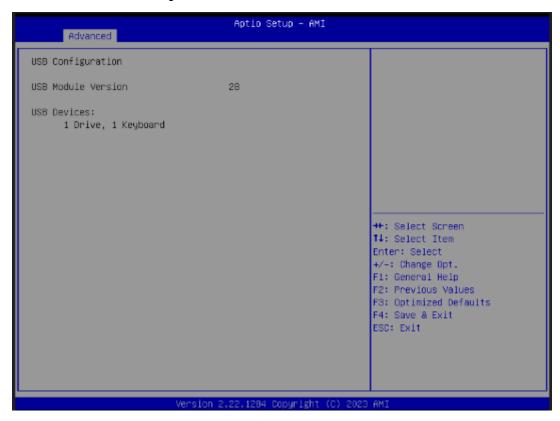


Serial Port 1

This item allows you to use it as RS232/422/485. The default is RS232.

Hardware Monitor

This screen monitors hardware health status.



This screen displays the temperature of system and CPU, cooling fans speed in RPM and system voltages (VCC_CPU, DDR, +12V, +5V and +3.3V).

Note: Fan module is an option kit, fans speed will be displayed when it is installed in IPC962A and IPC964A.

USB Configuration

This screen shows USB configuration.

PCI Subsystem Setting

This screen allows you to set PCI Subsystem mode.

- PCI Latency Timer
 Set the value to be programmed into PCI Latency Timer Register.
- VGA Palette Snoop
 Enables or Disables VGA Palette Registers Snooping.

3.5 Chipset Menu

The Chipset menu allows users to change the advanced chipset settings. You can select any of the items in the left frame of the screen to go to the sub menus:

- System Agent (SA) Configuration
- PCH-IO Configuration

For items marked with "▶", please press <Enter> for more options.

• System Agent (SA) Configuration

This screen allows users to configure System Agent (SA) parameters. For items marked with "▶", please press <Enter> for more options.

➤ VT-d

Check to enable VT-d function on MCH.

Above 4GB MMIO BIOS assignment

Enable/Disable above 4GB Memory Mapped IO BIOS assignment. This is enabled automatically when Aperture Size is set to 2048MB.

• Graphics Configuration

This screen shows graphics configuration.

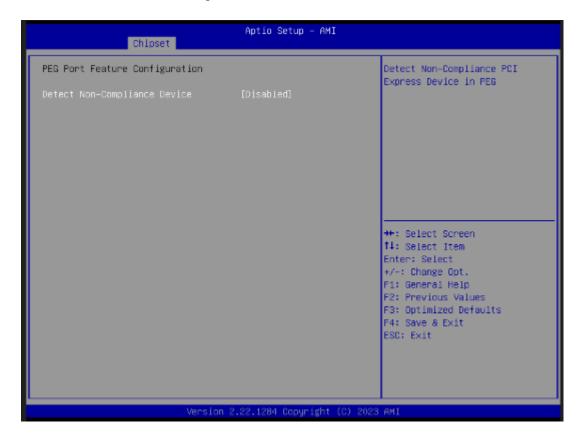


> Internal Graphics

Keep IGFX enabled based on the setup options.

CPU PCI Express Root Port

This screen shows CPU PCI Express root port information.



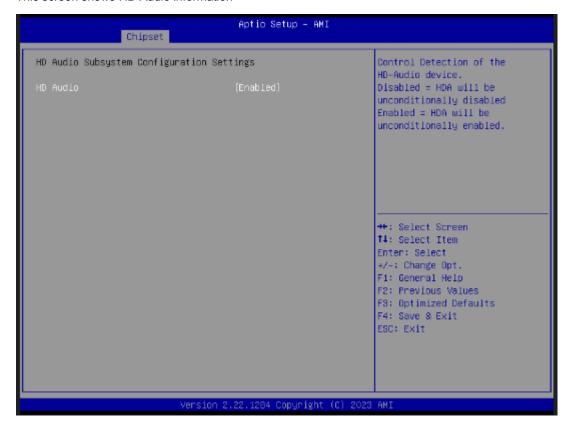
ASPM

Set the ASPM Level:\nForce L0s - Force all links to L0s State\nForce L1 - Force all links to L1 State\nForce L0sL1 - Force all links to L0SL1 State\nDISABLE - Disables ASPM.

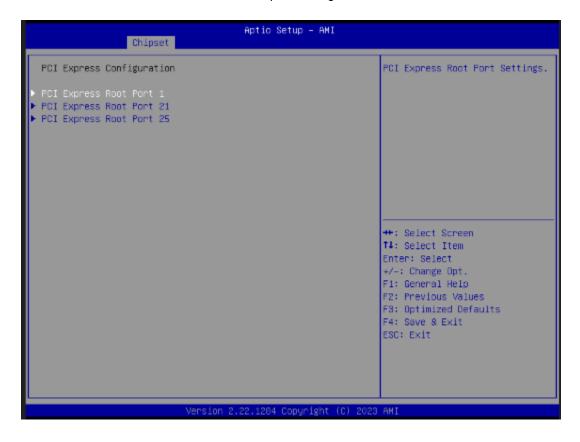

PCIe SpeedConfigure PCIe Speed.

PEG Port Feature Configuration

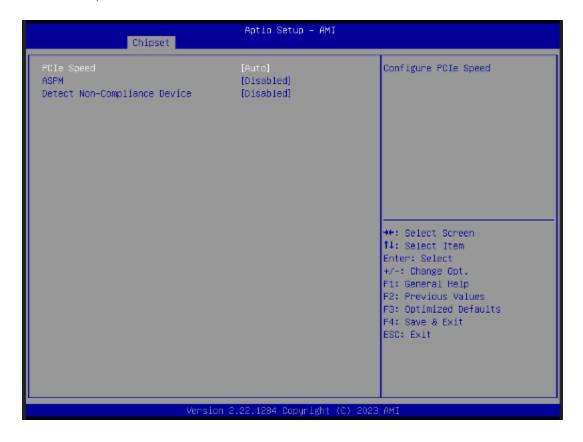
PCH-IO Configuration


This screen allows you to set PCH parameters.

- PCI Express Configuration
 Configure PCIe Speed.
- HD Audio Configuration
 Enable or disable HD Audio.
- Wake on LAN Enable Enable or disable integrated LAN to wake the system.


• HD Audio Configuration

This screen shows HD Audio information



• PCI Express Configuration

This screen shows the extended use of PCI Express configuration.



PCI Express Root Port

3.6 Security Menu

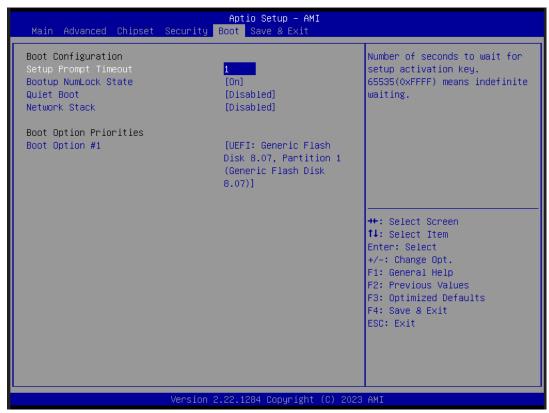
The Security menu allows users to change the security settings for the system.

Administrator Password

This item indicates whether an administrator password has been set (installed or uninstalled).

User Password

This item indicates whether an user password has been set (installed or uninstalled).


Secure Boot

This item is available on the UEFI firmware to provide a secure environment.

3.7 Boot Menu

The Boot menu allows users to change boot options of the system.

Setup Prompt Timeout

Set the number of seconds to wait for setup activation key. 65535(0xFFFF) means indefinite waiting.

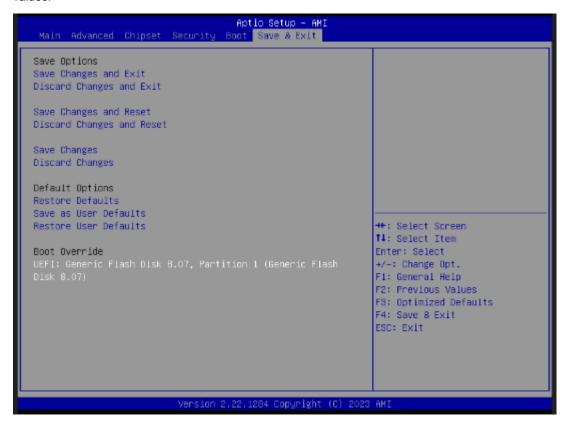
Bootup NumLock State

Use this item to select the power-on state for the keyboard NumLock.

Quiet Boot

Select to display either POST output messages or a splash screen during boot-up.

Launch PXE OpROM policy


Use this item to enable or disable the boot ROM function of the onboard LAN chip when the system boots up.

Boot Option Priorities

These are settings for boot priority. Specify the boot device priority sequence from the available devices.

3.8 Save & Exit Menu

The Save & Exit menu allows users to load your system configuration with optimal or fail-safe default values.

Save Changes and Exit

When finishing the system configuration settings, select this option to leave Setup and return to Main Menu. Select Save Changes and Exit from the Save & Exit menu and press <Enter>. Select Yes to save changes and exit.

Discard Changes and Exit

Select this option to quit Setup without making any permanent changes to the system configuration and return to Main Menu. Select Discard Changes and Exit from the Save & Exit menu and press <Enter>. Select Yes to discard changes and exit.

Save Changes and Reset

When finishing the system configuration settings, select this option to leave Setup and reboot the computer so the new system configuration parameters can take effect. Select Save Changes and Reset from the Save & Exit menu and press <Enter>. Select Yes to save changes and reset.

Discard Changes and Reset

Select this option to quit Setup without making any permanent changes to the system configuration and reboot the computer. Select Discard Changes and Reset from the Save & Exit menu and press <Enter>. Select Yes to discard changes and reset.

Save Changes

When finishing the system configuration settings, select this option to save changes. Select Save Changes from the Save & Exit menu and press <Enter>. Select Yes to save changes.

Discard Changes

Select this option to quit Setup without making any permanent changes to the system configuration. Select Discard Changes from the Save & Exit menu and press <Enter>. Select Yes to discard changes.

Restore Defaults

After selecting this option, all the settings will be restored to defaults automatically. Select Restore Defaults from the Save & Exit menu and press <Enter>.

Save as User Defaults

Select this option to save your current system configuration settings as User Defaults. Select Save as User Defaults from the Save & Exit menu and press <Enter>.

Restore User Defaults

After selecting this option, all the settings will be restored to user defaults automatically. Select Restore User Defaults from the Save & Exit menu and press <Enter>.

Boot Override

Select a drive to immediately boot that device regardless of the current boot order.

APPENDIX A WATCHDOG TIMER

A.1 About Watchdog Timer

Software stability is a major issue in most applications. Some embedded systems are not watched by an operator for 24 hours. It is usually too late to wait for someone to reboot when computer hangs. The systems need to be able to reset automatically when things go wrong. The watchdog timer gives us a solution in this regard.

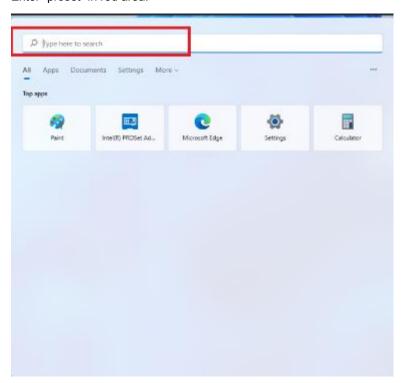
The watchdog timer is a counter that triggers a system reset when it counts down to zero from a preset value. The software starts the counter with an initial value and must reset it periodically. If the counter ever reaches zero which means the software has crashed, the system will reboot.

A.2 Sample Program

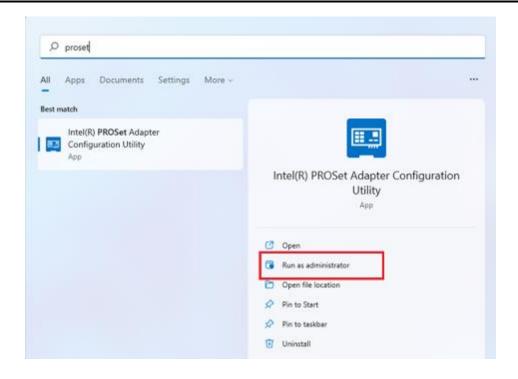
```
#include "stdafx.h"
#include <windows.h>
#include <stdio.h>
#include <tchar.h>
#include <stdlib.h>
#ifdef DEBUG
#define new DEBUG_NEW
#endif
#pragma comment (lib, "User32.lib")
#define IDT_TIMER WM_USER + 200
#define _CRT_SECURE_NO_WARNINGS 1
#define setbit(value,x) (value |=(1 << x))
#define clrbit(value,x) (value &=~(1<<x))
HINSTANCE hinstLibDLL = NULL;
LONG WDTDATA = 0;
typedef ULONG(*LPFNDLLGETIOSPACE)(ULONG);
LPFNDLLGETIOSPACE lpFnDll_Get_IO;
typedef void(*LPFNDLLSETIOSPACE)(ULONG, ULONG);
LPFNDLLSETIOSPACE lpFnDll_Set_IO;
int _tmain(int argc, _TCHAR* argv[])
```

```
int unit = 0;
int WDTtimer = 0;
if (hinstLibDLL == NULL)
hinstLibDLL = LoadLibrary(TEXT("diodll.dll"));
if (hinstLibDLL == NULL)
{
//MessageBox("Load diodll dll error", "", MB_OK);
}
if (hinstLibDLL)
{
lpFnDll_Get_IO = (LPFNDLLGETIOSPACE)GetProcAddress(GetModuleHandle("diodll.dll"),
"GetIoSpaceByte");
lpFnDll_Set_IO = (LPFNDLLSETIOSPACE)GetProcAddress(GetModuleHandle("diodll.dll"),
"SetIoSpaceByte");
}
printf("Input Watch Dog Timer type, 1:Second ; 2:Minute :");
scanf("%d",&unit);
printf("\nInput Timer to countdown:");
scanf("%d", &WDTtimer);
printf("Start to countdown...");
//==Enter MB Pnp Mode==
lpFnDll_Set_IO(0x2e, 0x87);
IpFnDIl_Set_IO(0x2e, 0x87);
lpFnDll_Set_IO(0x2e, 0x07);
lpFnDll_Set_IO(0x2f, 0x07); //SET LDN 07
//set LDN07 FA 10 to 11
lpFnDll_Set_IO(0x2e, 0xFA);
WDTDATA = IpFnDII\_Get_IO(0x2f);
WDTDATA = setbit(WDTDATA, 0);
lpFnDll_Set_IO(0x2f, WDTDATA);
if (unit == 1)
lpFnDll_Set_IO(0x2e, 0xF6);
lpFnDll_Set_IO(0x2f, WDTtimer);
//start watchdog counting
lpFnDll_Set_IO(0x2e, 0xF5);
WDTDATA = lpFnDll_Get_IO(0x2f);
WDTDATA = setbit(WDTDATA, 5);
lpFnDll_Set_IO(0x2f, WDTDATA);
```

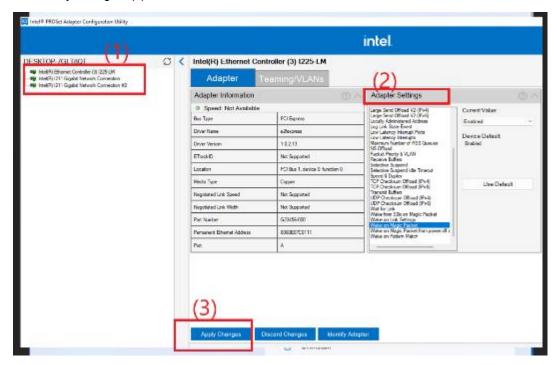
```
}
else if (unit == 2)
//set WDT Timer
IpFnDIl_Set_IO(0x2e, 0xF6);
lpFnDll_Set_IO(0x2f, WDTtimer);
//set watchdog time unit to min
lpFnDll_Set_IO(0x2e, 0xF5);
WDTDATA = lpFnDll_Get_IO(0x2f);
WDTDATA = setbit(WDTDATA, 3);
lpFnDll_Set_IO(0x2f, WDTDATA);
//start watchdog counting
lpFnDll_Set_IO(0x2e, 0xF5);
WDTDATA = lpFnDll_Get_IO(0x2f);
WDTDATA = setbit(WDTDATA, 5);
lpFnDll_Set_IO(0x2f, WDTDATA);
}
system("pause");
return 0;
}
```


This page is intentionally left blank.

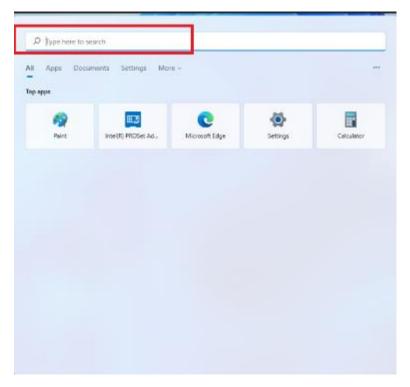
APPENDIX B WAKE on LAN


How to Set up Wake on LAN

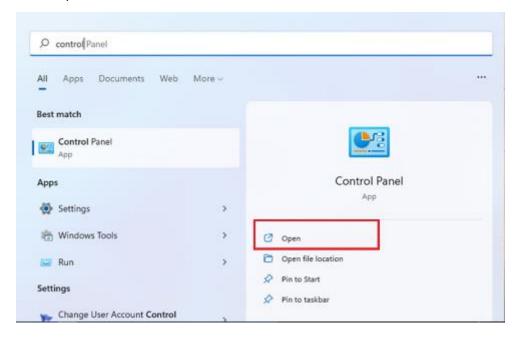
Please follow the following steps to set up Wake on LAN on Windows 11.


- 1. Press "w/ "S" or press " on Windows desktop.
- 2. Enter "proset" in red area.

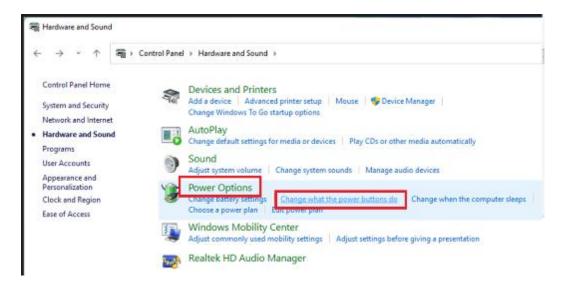
3. Select "Run as administrator"

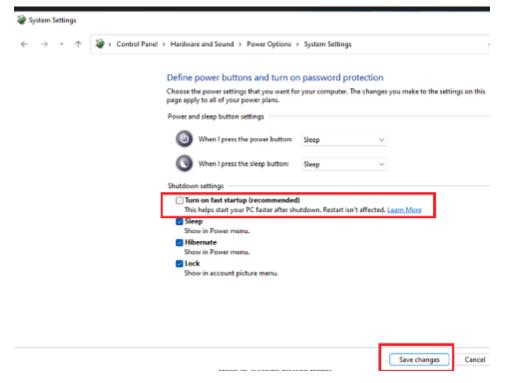


- 4. Select a LAN port (1) which will support "Wake on LAN", then enable functionality you need under "Adapter Settings" (2)
- 5. Press "Any Changes" (3).



**Please follow step 4 and step 5 to set the other LAN ports for "Wake on LAN"


- 6. Press "w/ "S" or press " on Windows desktop.
- 7. Enter "control panel" in red area.


8. Select "Open".

9. Press Power options → Change what the power button do

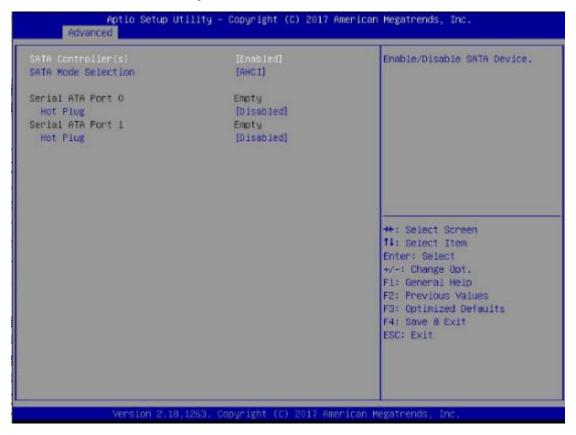
10. Remove " rrom "Turn on fast startup", the press "Save changes".

11. Reboot the system to enable the above settings. Installation is completed.

This page is intentionally left blank.

APPENDIX D HDD HOT-SWAPPABLE

HDD HOT-SWAPPABLE


IPC960A/IPC962A/IPC964A offers two hot-swapp 2.5" HDD or SSD, people can easy install and replace the storages by following steps.

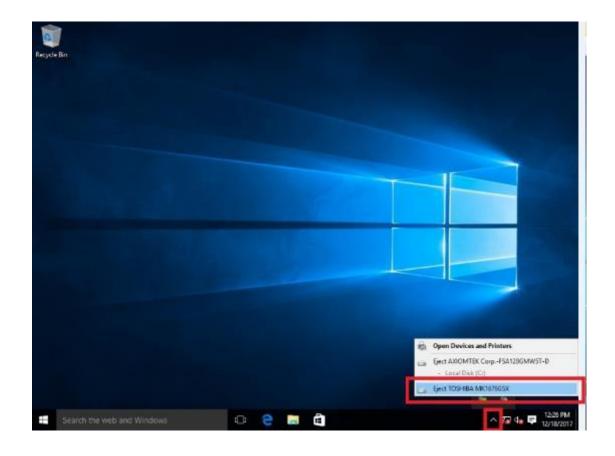
Using HDD hot-swappable function

Step 1 Please press "Delete" after turn on the system, then following the path to enable the Hot Plug function.

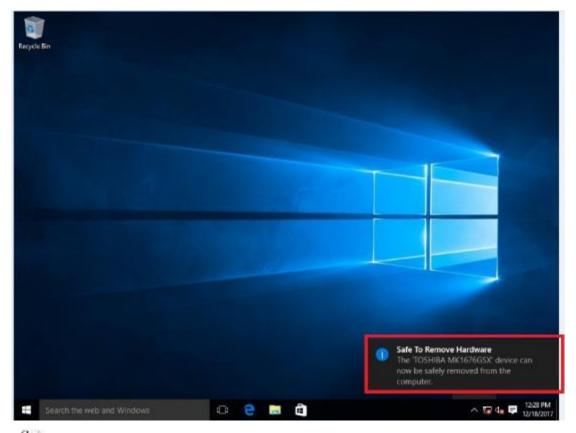
BIOS setup→Advamced→SATA Controller(s)→SATA Mode Selection→

Serial ATA Port→Hot Plug enable

Step 2 System auto reboot, installation completed.


116 HDD Hot-Swappable

Removing Hot-Swappable storage


Step 1 Click " "

Step 2 Select "Eject xxxx".

Step 3 Remove the HDD devic after "Safe To Remove Hardware" shown.

HDD Hot-Swappable 117

Note: Please close the programs which are in using before removing the devices.

118 HDD Hot-Swappable